Broyden–Fletcher–Goldfarb–Shanno算法
共轭梯度法
数学
非线性共轭梯度法
行搜索
梯度下降
水准点(测量)
趋同(经济学)
数学优化
算法
下降(航空)
有界函数
计算机科学
数学分析
人工神经网络
计算机网络
异步通信
计算机安全
大地测量学
机器学习
航空航天工程
经济增长
经济
工程类
半径
地理
作者
Jitsupa Deepho,Auwal Bala Abubakar,Maulana Malik,Ioannis K. Argyros
标识
DOI:10.1016/j.cam.2021.113823
摘要
In this work, a new hybrid conjugate gradient (CG) algorithm is developed for finding solutions to unconstrained optimization problems. The search direction of the algorithm consists of a combination of conjugate descent (CD) and Dai–Yuan (DY) CG parameters. The search direction is also close to the direction of the memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton algorithm. Moreover, the search direction is bounded and satisfies the descent condition independent of the line search. The global convergence of the algorithm under the Wolfe-type is proved with the help of some proper assumptions. Numerical experiments on some benchmark test problems are reported to show the efficiency of the new algorithm compared with other existing schemes. Finally, application of the algorithm in risk optimization completes the work.
科研通智能强力驱动
Strongly Powered by AbleSci AI