Response surface methodology for multi-objective optimization of fly ash-GGBS based geopolymer mortar

聚合物 磨细高炉矿渣 材料科学 响应面法 抗压强度 抗弯强度 粉煤灰 微观结构 固化(化学) 复合材料 灰浆 数学 统计
作者
Xiaoshuang Shi,Cong Zhang,Xiaoqi Wang,Tao Zhang,Qingyuan Wang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:315: 125644-125644 被引量:84
标识
DOI:10.1016/j.conbuildmat.2021.125644
摘要

Neat fly ash based geopolymer require high temperature curing to obtain satisfactory properties. In order to improve its workability and mechanical properties under room temperature curing, taking ground granulated blast furnace slag (GGBS) substitution, alkaline solution to binder (S/B) ratio, and Na2SiO3 to NaOH solution ratio (SS/SH) as independent variables and compressive strength, flexural strength, and setting time as response target values, the response surface method (RSM) is used to design the test and establish the regression model. The multi-objective optimization of the comprehensive properties of geopolymer mortar was realized, followed by the verified experiments of the proposed optimized mix. To investigate the microstructure and composition of the hydration products, the optimally proportioned and neat fly ash based specimens were tested by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the quadratic polynomial model was fitted with high accuracy and the GGBS substitution has a significant effect on the setting time and strength of the geopolymer. The compressive and flexural strengths were 80.46 MPa and 11.98 MPa when the slag was mixed at 75%, S/B = 0.45, and SS/SH = 1.5, which was 9% and 14.8% higher than the strength of neat fly ash based geopolymer mortar maintained at high temperature curing. SEM results show that the geopolymer added with GGBS performs a denser microstructure, which confirms the effectiveness of RSM in determining the optimal mix parameters of geopolymer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuyu完成签到,获得积分10
1秒前
桐伶发布了新的文献求助10
2秒前
zch19970203完成签到,获得积分10
2秒前
wanci应助棋子采纳,获得10
3秒前
哇哦完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
希望天下0贩的0应助zh1858f采纳,获得10
4秒前
4秒前
行者无疆发布了新的文献求助10
5秒前
小匹夫发布了新的文献求助10
5秒前
5秒前
搞怪的萃发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
科研通AI6应助妙妙0采纳,获得10
9秒前
奇异果果完成签到 ,获得积分10
9秒前
阿屁屁猪完成签到,获得积分10
9秒前
思源应助陈思采纳,获得10
10秒前
10秒前
大模型应助桐伶采纳,获得10
10秒前
Arthur完成签到 ,获得积分10
10秒前
淡淡的小老鼠完成签到,获得积分10
11秒前
11秒前
科研通AI6应助tyr001采纳,获得10
11秒前
甜甜跳跳糖完成签到 ,获得积分20
12秒前
科研通AI2S应助新月采纳,获得30
12秒前
流窜意识完成签到,获得积分10
12秒前
danporzhu发布了新的文献求助10
12秒前
刘洋发布了新的文献求助10
12秒前
伶俐猪完成签到 ,获得积分10
13秒前
某某某完成签到,获得积分10
13秒前
14秒前
14秒前
谭绮晴完成签到,获得积分10
15秒前
星星发布了新的文献求助10
16秒前
白雅方发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342