The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality

支持向量机 稳健性(进化) 季节性 时间序列 需求预测 计算机科学 产品(数学) 计量经济学 多样性(控制论) 数据挖掘 运筹学 机器学习 经济 人工智能 工程类 数学 生物化学 基因 化学 几何学
作者
Guo Liang,Weiguo Fang,Qiuhong Zhao,Xu Wang
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:161: 107598-107598 被引量:63
标识
DOI:10.1016/j.cie.2021.107598
摘要

• A hybrid seasonal forecasting model based on PROPHET-SVR is proposed. • The proposed model performs strongly in capturing seasonal and nonlinear patterns in time series data. • SVR residual correction and improved parameter determination method are used to improve the forecasting accuracy. • The proposed model outperforms other models under comparison in terms of forecasting accuracy. Demand forecasting is the basic aspect of supply chain management. It has important impacts on planning, capacity and inventory control decisions. Seasonality is a common characteristic of most time series demands in practice. Thus, regarding seasons and holidays as important factors of demand forecasting is nontrivial, which contributes to increased forecasting accuracy. In this study, we propose a hybrid approach that integrates Prophet and SVR (support vector regression) models to forecast time series demand in the manufacturing industry with seasonality. In the proposed hybrid PROPHET-SVR approach, Prophet is used to forecast the seasonal fluctuations and determine the input variables of SVR, and SVR is used to capture nonlinear patterns. Therefore, the approach can not only customize the influence of holidays and seasons but also account for the forecasting residual to increase the accuracy. Computational results demonstrate that the hybrid PROPHET-SVR approach outperforms a variety of other prediction methods. This paper also illustrates the application of the new forecasting method in a case of the manufacturing industry in China, and proves the robustness of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超帅沂发布了新的文献求助10
1秒前
苏杉杉发布了新的文献求助10
1秒前
1秒前
1秒前
polestar发布了新的文献求助10
2秒前
2秒前
2秒前
ForComposites发布了新的文献求助10
3秒前
颜琪发布了新的文献求助10
3秒前
4秒前
4秒前
松松完成签到,获得积分20
4秒前
lileilei完成签到,获得积分10
4秒前
张建发布了新的文献求助10
4秒前
知12发布了新的文献求助10
4秒前
sci完成签到 ,获得积分10
5秒前
飞飞飞发布了新的文献求助10
5秒前
Oreaee完成签到,获得积分10
5秒前
脆皮小小酥完成签到,获得积分10
5秒前
汉堡包应助苏杉杉采纳,获得10
6秒前
彭于晏应助yyyxxx采纳,获得10
6秒前
周围发布了新的文献求助10
6秒前
巴啦啦能量完成签到,获得积分10
7秒前
ddk六发布了新的文献求助10
7秒前
好叭完成签到,获得积分10
7秒前
8秒前
马上毕业完成签到 ,获得积分10
9秒前
seannnnnnn完成签到,获得积分10
9秒前
欢呼妙菱发布了新的文献求助10
9秒前
kk完成签到,获得积分10
9秒前
无助的老头完成签到,获得积分20
10秒前
10秒前
11秒前
jimmy完成签到,获得积分10
11秒前
11秒前
香蕉觅云应助知12采纳,获得10
11秒前
冰山发布了新的文献求助10
11秒前
RenS完成签到,获得积分10
13秒前
沙耶酱完成签到,获得积分10
13秒前
yyyxxx完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650