The hybrid PROPHET-SVR approach for forecasting product time series demand with seasonality

支持向量机 稳健性(进化) 季节性 时间序列 需求预测 计算机科学 产品(数学) 计量经济学 多样性(控制论) 数据挖掘 运筹学 机器学习 经济 人工智能 工程类 数学 生物化学 基因 化学 几何学
作者
Guo Liang,Weiguo Fang,Qiuhong Zhao,Xu Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:161: 107598-107598 被引量:63
标识
DOI:10.1016/j.cie.2021.107598
摘要

• A hybrid seasonal forecasting model based on PROPHET-SVR is proposed. • The proposed model performs strongly in capturing seasonal and nonlinear patterns in time series data. • SVR residual correction and improved parameter determination method are used to improve the forecasting accuracy. • The proposed model outperforms other models under comparison in terms of forecasting accuracy. Demand forecasting is the basic aspect of supply chain management. It has important impacts on planning, capacity and inventory control decisions. Seasonality is a common characteristic of most time series demands in practice. Thus, regarding seasons and holidays as important factors of demand forecasting is nontrivial, which contributes to increased forecasting accuracy. In this study, we propose a hybrid approach that integrates Prophet and SVR (support vector regression) models to forecast time series demand in the manufacturing industry with seasonality. In the proposed hybrid PROPHET-SVR approach, Prophet is used to forecast the seasonal fluctuations and determine the input variables of SVR, and SVR is used to capture nonlinear patterns. Therefore, the approach can not only customize the influence of holidays and seasons but also account for the forecasting residual to increase the accuracy. Computational results demonstrate that the hybrid PROPHET-SVR approach outperforms a variety of other prediction methods. This paper also illustrates the application of the new forecasting method in a case of the manufacturing industry in China, and proves the robustness of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助BINGBING1230采纳,获得10
1秒前
leezh发布了新的文献求助10
2秒前
白鸽鸽完成签到,获得积分10
2秒前
3秒前
chenzihao完成签到,获得积分10
7秒前
小九九发布了新的文献求助10
8秒前
Orange应助小鹏采纳,获得10
8秒前
端庄青雪完成签到,获得积分10
11秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
排骨年糕发布了新的文献求助10
13秒前
刘璟高完成签到,获得积分10
15秒前
小鹏完成签到,获得积分10
16秒前
19秒前
英俊的铭应助小九九采纳,获得10
19秒前
庸人自扰完成签到,获得积分10
22秒前
小鹏发布了新的文献求助10
23秒前
十一月的阴天完成签到,获得积分10
23秒前
24秒前
流香完成签到,获得积分10
24秒前
zzzllove完成签到 ,获得积分10
25秒前
大宝君应助qqqyy采纳,获得30
26秒前
天空之城发布了新的文献求助200
28秒前
回眸是明眸完成签到,获得积分10
28秒前
思源应助leezh采纳,获得10
28秒前
苏桑焉完成签到 ,获得积分10
28秒前
28秒前
28秒前
999完成签到,获得积分10
31秒前
科研通AI6应助安白采纳,获得10
32秒前
平常小懒猪完成签到,获得积分10
33秒前
研友_LNBeyL发布了新的文献求助10
33秒前
淡定访枫发布了新的文献求助10
33秒前
33秒前
isle完成签到 ,获得积分10
34秒前
34秒前
扬帆起航行万里完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316