First principles study on formation and migration energies of sodium and lithium in graphite

石墨 材料科学 锂(药物) 插层(化学) 扩散 碱金属 堆积 石墨烯 结晶学 无机化学 纳米技术 热力学 化学 复合材料 有机化学 内分泌学 物理 医学
作者
Izumi Takahara,Teruyasu Mizoguchi
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:5 (8) 被引量:8
标识
DOI:10.1103/physrevmaterials.5.085401
摘要

Graphite is used as an anode material in conventional lithium-ion batteries owing to its ability to form stable Li-intercalated graphite intercalation compounds (Li GICs). Its application to sodium-ion batteries has long been of great interest, but the instability of Na GICs hampers its implementation. First-principles calculations were performed to gain physical insight into the intercalation process in alkali-metal (AM) GICs, where $\mathrm{AM}=\mathrm{Li}$, Na. In this study, the structure, stability, and diffusion properties of AM GICs with various in-plane AM concentrations were systematically investigated using a van der Waals density functional simulation, and the differences between Li and Na GICs were discussed. Li GICs were found to be quite stable over a wide range of in-plane Li concentrations, with a change in the favorable stacking sequence of graphite. In terms of diffusion, the migration energy for Li in graphite increases as the graphite stacking transition occurs, suggesting that hindering the stacking transition could realize fast and uniform Li diffusion. In contrast, Na GICs are less stable than Li GICs because of following two reasons: (1) interaction between Na and carbon is less stable than that between Li and carbon, and (2) a larger amount of deformation in the interlayer distance is necessary. The Na GICs tend to be stabilized by increasing the number of Na-carbon interactions. Namely, fasted Na diffusion is expected in the Na-rich phase. Our systematic simulations of the formation energy and migration energy of Na GICs with different structures and in-plane AM concentrations suggested that the expansion of graphite layers prior to Na intercalation could achieve graphite anodes for Na-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lor发布了新的文献求助10
1秒前
xue发布了新的文献求助10
2秒前
来自三百发布了新的文献求助30
2秒前
搜集达人应助书生采纳,获得10
2秒前
3秒前
3秒前
5秒前
mingming发布了新的文献求助10
5秒前
打打应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
FIN应助科研通管家采纳,获得30
6秒前
风清扬应助科研通管家采纳,获得30
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
奥特超曼应助科研通管家采纳,获得20
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
努力发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
Windsyang完成签到,获得积分10
9秒前
10秒前
FashionBoy应助xue采纳,获得10
10秒前
11秒前
可爱的函函应助医者修心采纳,获得20
13秒前
lc完成签到,获得积分10
14秒前
Friday完成签到,获得积分20
15秒前
lor完成签到,获得积分10
15秒前
张道微发布了新的文献求助10
16秒前
医者修心完成签到,获得积分20
16秒前
太叔夜南完成签到,获得积分10
17秒前
zhl发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712