A Robust Transfer Dictionary Learning Algorithm for Industrial Process Monitoring

计算机科学 学习迁移 原始数据 正规化(语言学) 机器学习 人工智能 过程(计算) 数据挖掘 分歧(语言学) 算法 语言学 操作系统 哲学 程序设计语言
作者
Chunhua Yang,Huiping Liang,Keke Huang,Yonggang Li,Weihua Gui
出处
期刊:Engineering [Elsevier BV]
卷期号:7 (9): 1262-1273 被引量:15
标识
DOI:10.1016/j.eng.2020.08.028
摘要

Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge. However, most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution. In fact, due to the harsh environment of industrial systems, the collected data from real industrial processes are always affected by many factors, such as the changeable operating environment, variation in the raw materials, and production indexes. These factors often cause the distributions of online monitoring data and historical training data to differ, which induces a model mismatch in the process-monitoring task. Thus, it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring. In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments, a robust transfer dictionary learning (RTDL) algorithm is proposed in this paper for industrial process monitoring. The RTDL is a synergy of representative learning and domain adaptive transfer learning. The proposed method regards historical training data and online testing data as the source domain and the target domain, respectively, in the transfer learning problem. Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework, which can reduce the distribution divergence between the source domain and target domain. In this way, a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment. Such a dictionary can effectively improve the performance of process monitoring and mode classification. Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跳妈妈发布了新的文献求助10
刚刚
小蘑菇应助高序采纳,获得10
刚刚
00完成签到 ,获得积分10
1秒前
赘婿应助复杂的扬采纳,获得10
1秒前
神勇傲儿完成签到,获得积分20
1秒前
2秒前
2秒前
刘齐发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
6秒前
shmily发布了新的文献求助10
7秒前
听说发布了新的文献求助10
7秒前
昵称儿完成签到 ,获得积分10
7秒前
wjx发布了新的文献求助10
8秒前
8秒前
lyp7028完成签到,获得积分10
8秒前
asda发布了新的文献求助10
9秒前
加电时间完成签到,获得积分10
9秒前
Ha7发布了新的文献求助10
9秒前
星辰大海应助Two-Capitals采纳,获得10
10秒前
10秒前
爆米花应助大饼卷肉采纳,获得10
11秒前
CipherSage应助校长采纳,获得10
11秒前
苏灿应助kassidy采纳,获得10
11秒前
secost发布了新的文献求助10
11秒前
宋怡慷完成签到,获得积分10
12秒前
12秒前
1111完成签到,获得积分10
12秒前
顾矜应助123456采纳,获得10
13秒前
ziying126发布了新的文献求助10
13秒前
思源应助asda采纳,获得10
14秒前
14秒前
香蕉觅云应助无望幽月采纳,获得10
14秒前
15秒前
科目三应助Harry采纳,获得30
15秒前
哇哈哈哈哈哈完成签到,获得积分10
16秒前
Ha7完成签到,获得积分10
16秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219