A Robust Transfer Dictionary Learning Algorithm for Industrial Process Monitoring

计算机科学 学习迁移 原始数据 正规化(语言学) 机器学习 人工智能 过程(计算) 数据挖掘 分歧(语言学) 算法 语言学 操作系统 哲学 程序设计语言
作者
Chunhua Yang,Huiping Liang,Keke Huang,Yonggang Li,Weihua Gui
出处
期刊:Engineering [Elsevier BV]
卷期号:7 (9): 1262-1273 被引量:15
标识
DOI:10.1016/j.eng.2020.08.028
摘要

Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge. However, most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution. In fact, due to the harsh environment of industrial systems, the collected data from real industrial processes are always affected by many factors, such as the changeable operating environment, variation in the raw materials, and production indexes. These factors often cause the distributions of online monitoring data and historical training data to differ, which induces a model mismatch in the process-monitoring task. Thus, it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring. In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments, a robust transfer dictionary learning (RTDL) algorithm is proposed in this paper for industrial process monitoring. The RTDL is a synergy of representative learning and domain adaptive transfer learning. The proposed method regards historical training data and online testing data as the source domain and the target domain, respectively, in the transfer learning problem. Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework, which can reduce the distribution divergence between the source domain and target domain. In this way, a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment. Such a dictionary can effectively improve the performance of process monitoring and mode classification. Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
see发布了新的文献求助10
刚刚
1秒前
漂亮的人生完成签到,获得积分10
2秒前
叩桥不渡完成签到,获得积分10
2秒前
5秒前
nini发布了新的文献求助10
6秒前
田様应助不安的鞋垫采纳,获得20
9秒前
10秒前
月亮moon完成签到,获得积分10
10秒前
张玉发布了新的文献求助10
11秒前
青夏发布了新的文献求助10
12秒前
轻松的鑫完成签到 ,获得积分10
13秒前
15秒前
16秒前
曼凡发布了新的文献求助10
16秒前
野子发布了新的文献求助10
17秒前
Huangxy发布了新的文献求助10
17秒前
爱窦完成签到 ,获得积分10
18秒前
18秒前
牛肉面发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
赘婿应助漂亮孤兰采纳,获得10
21秒前
关关完成签到 ,获得积分10
22秒前
当当完成签到,获得积分10
23秒前
23秒前
科研通AI2S应助野子采纳,获得10
24秒前
25秒前
共享精神应助肖珂采纳,获得10
26秒前
香蕉觅云应助pansy采纳,获得30
27秒前
28秒前
28秒前
30秒前
wsazah完成签到,获得积分10
30秒前
耳百完成签到,获得积分10
30秒前
QUA应助咖飞采纳,获得10
30秒前
白佚行完成签到 ,获得积分10
31秒前
涛声依旧应助包宇采纳,获得10
33秒前
yfzhang发布了新的文献求助10
33秒前
Rec完成签到 ,获得积分10
33秒前
没有昵称完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971655
求助须知:如何正确求助?哪些是违规求助? 3516320
关于积分的说明 11181963
捐赠科研通 3251445
什么是DOI,文献DOI怎么找? 1795889
邀请新用户注册赠送积分活动 876131
科研通“疑难数据库(出版商)”最低求助积分说明 805266