DOCC: Deep one-class crop classification via positive and unlabeled learning for multi-modal satellite imagery

人工智能 班级(哲学) 计算机科学 多光谱图像 合成孔径雷达 高光谱成像 土地覆盖 遥感 基本事实 卫星图像 上下文图像分类 卫星 比例(比率) 机器学习 模式识别(心理学) 地理 土地利用 图像(数学) 地图学 工程类 土木工程 航空航天工程
作者
Lei Lei,Xinyu Wang,Yanfei Zhong,Hengwei Zhao,Xin Hu,Chang Luo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:105: 102598-102598 被引量:30
标识
DOI:10.1016/j.jag.2021.102598
摘要

Large-scale crop mapping is an important task in agricultural resource monitoring, but it does usually require the ground-truth labels of all the land-cover types in the remotely sensed imagery. However, labeling each land-cover type is time-consuming and labor-intensive. One-class classification, which only needs samples of the class of interest, can solve the problem of redundant labeling. However, the traditional one-class classifiers require well-designed features to realize fine classification, and are thus difficult to apply to complex multi-modal remote sensing data, i.e., optical imagery and synthetic aperture radar (SAR) imagery. In this paper, a deep one-class crop (DOCC) framework that includes a deep one-class crop extraction module and a one-class crop extraction loss module is proposed for large-scale one-class crop mapping. The DOCC framework takes only the samples of one target class as the input to extract the crop of interest by positive and unlabeled learning and can automatically extract the features for one-class crop mapping, without requiring a large amount of labeling for all the land-cover type or feature design based on prior expert knowledge. Experiments conducted on multi-modal remote sensing data, i.e., Zhuhai-1 hyperspectral satellite data, Sentinel-2 multispectral time-series satellite data and Sentinel-1 SAR satellite data, illustrate that DOCC can automatically extract the effective features for one-class classification from multi-modal satellite imagery and reaches the highest F1 accuracy compared with other methods on respective satellite imagery. The results also reveal the different performance of multi-modal satellite imagery when they are used to extract different crop types. Meanwhile, the feasibility of DOCC for multi-modal data can be beneficial for large-scale mapping under different conditions when the samples of multi-class are difficult to obtain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘佳发布了新的文献求助30
刚刚
ash发布了新的文献求助10
1秒前
1秒前
Ttttt完成签到,获得积分10
2秒前
515发布了新的文献求助10
2秒前
3秒前
雪景写诗发布了新的文献求助10
3秒前
乐乐应助hosoh采纳,获得10
4秒前
8R60d8应助小可爱采纳,获得10
4秒前
4秒前
Akim应助Agoni采纳,获得10
4秒前
xiezizai完成签到,获得积分10
5秒前
33发布了新的文献求助10
6秒前
6秒前
2010发布了新的文献求助30
7秒前
7秒前
学术通zzz应助陈住气采纳,获得20
7秒前
禾沐发布了新的文献求助10
8秒前
可爱的函函应助七七八八采纳,获得10
8秒前
张张张发布了新的文献求助20
9秒前
9秒前
Ivy完成签到,获得积分10
9秒前
9秒前
nhscyhy完成签到,获得积分10
10秒前
AU完成签到,获得积分10
11秒前
DOCTORLI发布了新的文献求助10
11秒前
yuanjingnan发布了新的文献求助10
11秒前
Anan完成签到,获得积分10
12秒前
深情安青应助刘佳采纳,获得10
13秒前
13秒前
小蘑菇发布了新的文献求助10
13秒前
14秒前
leeOOO完成签到,获得积分10
14秒前
nhscyhy发布了新的文献求助10
14秒前
dddd发布了新的文献求助10
14秒前
14秒前
在水一方应助寻一采纳,获得10
16秒前
今后应助mooncakeshi采纳,获得10
16秒前
17秒前
满意的李玉波完成签到,获得积分10
17秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3332963
求助须知:如何正确求助?哪些是违规求助? 2962400
关于积分的说明 8605709
捐赠科研通 2641333
什么是DOI,文献DOI怎么找? 1445992
科研通“疑难数据库(出版商)”最低求助积分说明 669970
邀请新用户注册赠送积分活动 657988