Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: a first-principles prediction

材料科学 热电效应 带隙 蜂巢 蜂窝结构 工程物理 光电子学 纳米技术 物理 复合材料 热力学
作者
Shuwei Tang,Shulin Bai,Mengxiu Wu,Dongming Luo,Dongyang Wang,Shaobin Yang,Li‐Dong Zhao
出处
期刊:Materials Today Energy [Elsevier]
卷期号:23: 100914-100914 被引量:26
标识
DOI:10.1016/j.mtener.2021.100914
摘要

Motivated by the superior thermoelectric performance of two-dimensional (2D) materials, the thermoelectric properties of honeycomb-like puckered PbSe monolayer are theoretically evaluated using the first-principles calculation and the semiclassical Boltzmann transport theory. The computational results show that the puckered PbSe monolayer is an indirect semiconductor with a wide bandgap of 2.31 eV within Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional in combination with spin-orbital coupling (SOC) effect. The phonon dispersion spectrum and mechanical stabilities show that the PbSe monolayer is thermodynamically and mechanically stable without negative frequencies and elastic constants. The Seebeck coefficients corresponding to the maximum figure of merit ( ZT ) at 900 K are ∼ 234 and ∼ 280 μV/K along the armchair and zigzag directions, respectively, which are highly correlated to the special band structure and density of states of PbSe monolayer. Along the armchair and zigzag directions, strong anisotropy in the thermoelectric properties is discovered for the p -type PbSe monolayer. The maximum ZT for optimal p -type doping PbSe monolayer at 900 K approaches to ∼ 1.3 along the zigzag direction. Our present work would provide a deep insight into the thermoelectric transport in the low dimensional system and explore a new PbSe-based with wide bandgap thermoelectric material. • The honeycomb-liked puckered PbSe monolayer is an indirect semiconductor with wide bandgap. • The puckered PbSe monolayer possesses excellent electron transport properties and power factors. • The p -type PbSe monolayer can be used as potential material for thermoelectric applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Master_Ye发布了新的文献求助10
刚刚
lamitky发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
悠悠发布了新的文献求助10
2秒前
2秒前
爆米花应助皖医梁朝伟采纳,获得10
2秒前
2秒前
弎夜完成签到,获得积分10
2秒前
3秒前
3秒前
小禾发布了新的文献求助10
3秒前
俭朴衬衫完成签到 ,获得积分10
3秒前
Jared应助李xue采纳,获得10
4秒前
小吃货发布了新的文献求助10
4秒前
4秒前
脑洞疼应助Nomiy采纳,获得10
4秒前
SciGPT应助eating采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
小A同学发布了新的文献求助10
5秒前
5秒前
3386582258完成签到,获得积分10
5秒前
comic发布了新的文献求助10
6秒前
SciGPT应助谢谢采纳,获得10
6秒前
6秒前
ACY完成签到,获得积分10
6秒前
小二郎应助Sara_123采纳,获得10
7秒前
狂飙的小蜗牛完成签到,获得积分10
8秒前
完美世界应助九霄采纳,获得10
8秒前
crispy发布了新的文献求助30
8秒前
9秒前
9秒前
mylian发布了新的文献求助10
9秒前
9秒前
小坤同学发布了新的文献求助10
10秒前
芝士发布了新的文献求助10
10秒前
踏雾发布了新的文献求助10
10秒前
YinchenChen发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647599
求助须知:如何正确求助?哪些是违规求助? 4773824
关于积分的说明 15040250
捐赠科研通 4806401
什么是DOI,文献DOI怎么找? 2570250
邀请新用户注册赠送积分活动 1527084
关于科研通互助平台的介绍 1486162