计算机科学
随机森林
胶质母细胞瘤
金标准(测试)
数据集
软件
特征(语言学)
模式识别(心理学)
人工智能
数据挖掘
核医学
数学
统计
医学
哲学
程序设计语言
癌症研究
语言学
作者
Fatima Tensaouti,Franck Desmoulin,Julia Gilhodes,E. Martin,S. Ken,Jean Albert Lotterie,G. Noël,G. Truc,Marie‐Pierre Sunyach,M. Charissoux,Nicolas Magné,V. Lubrano,Patrice Péran,Elizabeth Cohen-Jonathan Moyal,Anne Laprie
摘要
Proton magnetic resonance spectroscopic imaging (1H MRSI) is a noninvasive technique for assessing tumor metabolism. Manual inspection is still the gold standard for quality control (QC) of spectra, but it is both time-consuming and subjective. The aim of the present study was to assess automatic QC of glioblastoma MRSI data using random forest analysis.Data for 25 patients, acquired prospectively in a preradiotherapy examination, were submitted to postprocessing with syngo.MR Spectro (VB40A; Siemens) or Java-based magnetic resonance user interface (jMRUI) software. A total of 28 features were extracted from each spectrum for the automatic QC. Three spectroscopists also performed manual inspections, labeling each spectrum as good or poor quality. All statistical analyses, with addressing unbalanced data, were conducted with R 3.6.1 (R Foundation for Statistical Computing; https://www.r-project.org).The random forest method classified the spectra with an area under the curve of 95.5%, sensitivity of 95.8%, and specificity of 81.7%. The most important feature for the classification was Residuum_Lipids_Versus_Fit, obtained with syngo.MR Spectro.The automatic QC method was able to distinguish between good- and poor-quality spectra, and can be used by radiation oncologists who are not spectroscopy experts. This study revealed a novel set of MRSI signal features that are closely correlated with spectral quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI