亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quality control of 3D MRSI data in glioblastoma: Can we do without the experts?

计算机科学 随机森林 胶质母细胞瘤 金标准(测试) 数据集 软件 特征(语言学) 模式识别(心理学) 人工智能 数据挖掘 核医学 数学 统计 医学 哲学 程序设计语言 癌症研究 语言学
作者
Fatima Tensaouti,Franck Desmoulin,Julia Gilhodes,E. Martin,S. Ken,Jean‐Albert Lotterie,G. Noël,G. Truc,Marie‐Pierre Sunyach,M. Charissoux,Nicolas Magné,V. Lubrano,Patrice Péran,Elizabeth Cohen‐Jonathan Moyal,Anne Laprie
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:87 (4): 1688-1699 被引量:9
标识
DOI:10.1002/mrm.29098
摘要

Proton magnetic resonance spectroscopic imaging (1H MRSI) is a noninvasive technique for assessing tumor metabolism. Manual inspection is still the gold standard for quality control (QC) of spectra, but it is both time-consuming and subjective. The aim of the present study was to assess automatic QC of glioblastoma MRSI data using random forest analysis.Data for 25 patients, acquired prospectively in a preradiotherapy examination, were submitted to postprocessing with syngo.MR Spectro (VB40A; Siemens) or Java-based magnetic resonance user interface (jMRUI) software. A total of 28 features were extracted from each spectrum for the automatic QC. Three spectroscopists also performed manual inspections, labeling each spectrum as good or poor quality. All statistical analyses, with addressing unbalanced data, were conducted with R 3.6.1 (R Foundation for Statistical Computing; https://www.r-project.org).The random forest method classified the spectra with an area under the curve of 95.5%, sensitivity of 95.8%, and specificity of 81.7%. The most important feature for the classification was Residuum_Lipids_Versus_Fit, obtained with syngo.MR Spectro.The automatic QC method was able to distinguish between good- and poor-quality spectra, and can be used by radiation oncologists who are not spectroscopy experts. This study revealed a novel set of MRSI signal features that are closely correlated with spectral quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助维颖采纳,获得10
2秒前
小花小宝和阿飞完成签到 ,获得积分10
7秒前
吴端完成签到,获得积分10
8秒前
贪玩老姆完成签到 ,获得积分10
13秒前
tj完成签到 ,获得积分10
18秒前
21秒前
阳佟水蓉完成签到,获得积分10
25秒前
27秒前
所所应助zhvjdb采纳,获得10
28秒前
29秒前
45秒前
49秒前
维颖发布了新的文献求助10
50秒前
科研通AI2S应助魏欣娜采纳,获得10
52秒前
55秒前
57秒前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
可爱的函函应助早川采纳,获得10
1分钟前
馍夹菜完成签到,获得积分10
1分钟前
1分钟前
2分钟前
Vivian发布了新的文献求助30
2分钟前
Fox完成签到,获得积分10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
维颖完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430