Alpine meadow degradation enhances the temperature sensitivity of soil carbon decomposition on the Qinghai–Tibetan plateau

土壤碳 底土 环境科学 表土 问题10 草地退化 时序 土壤退化 土壤科学 全球变暖 土壤质量 气候变化 草原 生态系统 土壤水分 农学 生态学 生物 植物 呼吸
作者
Jun‐Peng Pei,Yan Dong,Jinquan Li,La Qiong,Yuanwu Yang,Changming Fang,Jihua Wu
出处
期刊:Applied Soil Ecology [Elsevier]
卷期号:170: 104290-104290 被引量:6
标识
DOI:10.1016/j.apsoil.2021.104290
摘要

Grassland degradation is widespread globally, yet limited information is available on the effects and mechanisms of grassland degradation regarding the response of soil organic carbon (SOC) to temperature change. This is especially true for alpine regions, which can have high SOC storage and are extreme vulnerability to global warming. Here, we studied the temperature sensitivity of SOC decomposition (Q10, proportional change in decomposition rate for a 10 °C difference in temperature) in both the topsoil (0–10 cm depth) and subsoil (20–30 cm) along an alpine meadow degradation gradient on the Qinghai–Tibetan plateau (QTP). Q10 values were increased in response to alpine meadow degradation (severely degraded (2.42) > moderately degraded (2.20) > non-degraded (2.11)) and were higher in subsoil (2.34) than in topsoil (2.14) as a whole. Soil carbon quantity and quality and extracellular enzyme activities all decreased significantly with increasing degradation levels and soil depths. Among all the factors considered (soil texture; soil pH; carbon quantity, availability, and quality; and enzyme activities), Q10 values were found to be primarily mediated by carbon quality and enzyme activities. This result supported the “carbon-quality temperature” hypothesis in degraded alpine grassland, and that considering soil carbon quality and enzyme activity could improve predictions of the feedbacks between soil carbon and global warming under grassland degradation. Our findings suggest that alpine meadow degradation will further increase the losses of SOC in a warming climate, making the ecosystem more vulnerable to climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Dr.Tang采纳,获得10
刚刚
晨曦完成签到,获得积分10
刚刚
迟大猫应助细腻白柏采纳,获得10
刚刚
白白完成签到,获得积分10
1秒前
1秒前
1秒前
安静的难破完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
飞跃完成签到,获得积分10
2秒前
2秒前
2秒前
HEIKU应助热心的早晨采纳,获得10
3秒前
xxx发布了新的文献求助10
4秒前
科研通AI5应助nuliya采纳,获得10
4秒前
kira完成签到,获得积分10
5秒前
刘星星发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
汉堡包应助LYM采纳,获得10
6秒前
吉势甘发布了新的文献求助10
6秒前
zhu应助七块采纳,获得10
7秒前
8秒前
SweepingMonk应助kkkkkw采纳,获得10
8秒前
Summer完成签到,获得积分10
8秒前
研友_VZG7GZ应助starryxm采纳,获得10
8秒前
8秒前
WilsonT发布了新的文献求助20
8秒前
3-HP完成签到,获得积分10
8秒前
8秒前
kira发布了新的文献求助10
8秒前
大个应助丸子采纳,获得10
9秒前
EiRoco_0r完成签到,获得积分10
9秒前
wendinfgmei完成签到,获得积分10
9秒前
9秒前
10秒前
小前途完成签到,获得积分10
10秒前
大方小白发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678