A health-adaptive time-scale representation (HTSR) embedded convolutional neural network for gearbox fault diagnostics

卷积神经网络 计算机科学 断层(地质) 人工智能 模式识别(心理学) 代表(政治) 故障检测与隔离 利用 基础(线性代数) 深度学习 执行机构 数学 地质学 政治 计算机安全 地震学 政治学 法学 几何学
作者
Yunhan Kim,Kyumin Na,Byeng D. Youn
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:167: 108575-108575 被引量:30
标识
DOI:10.1016/j.ymssp.2021.108575
摘要

This research proposes a newly designed convolutional neural network (CNN) for gearbox fault diagnostics. A conventional CNN is a deep-learning model that offers distinctive performance for analyzing two-dimensional image data. To exploit this ability, prior work has been developed using time–frequency analysis, which derives image-like data that is fed into the CNN model. However, the existing time–frequency analysis approach employs fixed basis functions that are limited in their ability to capture fault-related signals in the image. To address this challenge, we propose a health-adaptive time-scale representation (HTSR) embedded CNN (HTSR-CNN). The proposed HTSR approach is designed to exploit the concept of TSR, which is informed by the physics of the time and frequency characteristics induced by the fault-related signals. Instead of using fixed basis functions, the HTSR is constructed using multiscale convolutional filters that behave like the adaptive basis functions. These multiscale filters are effectively learned to include the enriched fault-related information in the HTSR through end-to-end learning of the HTSR-CNN model. The performance of the proposed HTSR-CNN is validated by examining two case studies: vibration signals from a two-stage spur gearbox and vibration signals from a planetary gearbox. From the case study results, the proposed HTSR-CNN method is found to have superior performance for gearbox fault diagnostics, as compared to existing CNN-based fault diagnostic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wuming完成签到,获得积分10
3秒前
4秒前
5秒前
打打应助文艺的初露采纳,获得10
5秒前
坚强的沛芹完成签到,获得积分10
5秒前
5秒前
安然发布了新的文献求助10
7秒前
8秒前
xxxy发布了新的文献求助10
8秒前
XiaoDai完成签到,获得积分10
8秒前
8秒前
城九寒发布了新的文献求助10
9秒前
Owen应助hd采纳,获得10
9秒前
11秒前
科研通AI5应助鱼新碟采纳,获得10
11秒前
12秒前
12秒前
CC1030发布了新的文献求助10
13秒前
Lucas应助韭菜盒子采纳,获得10
13秒前
何以解忧发布了新的文献求助10
13秒前
Lze发布了新的文献求助10
13秒前
深情安青应助清爽的孤萍采纳,获得10
14秒前
傲娇的凡旋应助zzzzz采纳,获得10
14秒前
小何完成签到,获得积分10
14秒前
小白完成签到,获得积分10
14秒前
肉肉发布了新的文献求助10
15秒前
KUMINGA发布了新的文献求助10
15秒前
周周发布了新的文献求助10
15秒前
小白发布了新的文献求助10
15秒前
yn完成签到 ,获得积分10
16秒前
希望天下0贩的0应助spinon采纳,获得10
16秒前
姜小时完成签到,获得积分10
16秒前
英俊的铭应助66ds采纳,获得10
16秒前
ding应助ggg采纳,获得10
16秒前
17秒前
17秒前
pluto应助ahey采纳,获得30
17秒前
城九寒完成签到,获得积分10
17秒前
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204