A health-adaptive time-scale representation (HTSR) embedded convolutional neural network for gearbox fault diagnostics

卷积神经网络 计算机科学 断层(地质) 人工智能 模式识别(心理学) 代表(政治) 故障检测与隔离 利用 基础(线性代数) 深度学习 执行机构 数学 地质学 政治 计算机安全 地震学 政治学 法学 几何学
作者
Yunhan Kim,Kyumin Na,Byeng D. Youn
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:167: 108575-108575 被引量:30
标识
DOI:10.1016/j.ymssp.2021.108575
摘要

This research proposes a newly designed convolutional neural network (CNN) for gearbox fault diagnostics. A conventional CNN is a deep-learning model that offers distinctive performance for analyzing two-dimensional image data. To exploit this ability, prior work has been developed using time–frequency analysis, which derives image-like data that is fed into the CNN model. However, the existing time–frequency analysis approach employs fixed basis functions that are limited in their ability to capture fault-related signals in the image. To address this challenge, we propose a health-adaptive time-scale representation (HTSR) embedded CNN (HTSR-CNN). The proposed HTSR approach is designed to exploit the concept of TSR, which is informed by the physics of the time and frequency characteristics induced by the fault-related signals. Instead of using fixed basis functions, the HTSR is constructed using multiscale convolutional filters that behave like the adaptive basis functions. These multiscale filters are effectively learned to include the enriched fault-related information in the HTSR through end-to-end learning of the HTSR-CNN model. The performance of the proposed HTSR-CNN is validated by examining two case studies: vibration signals from a two-stage spur gearbox and vibration signals from a planetary gearbox. From the case study results, the proposed HTSR-CNN method is found to have superior performance for gearbox fault diagnostics, as compared to existing CNN-based fault diagnostic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助qiqi采纳,获得10
1秒前
迅速冰岚完成签到,获得积分10
2秒前
迅速冰岚发布了新的文献求助10
6秒前
英姑应助醉酒笑红尘采纳,获得10
8秒前
田様应助简单的奇迹采纳,获得10
9秒前
10秒前
11秒前
11秒前
Gopal完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
15秒前
发发完成签到 ,获得积分10
15秒前
Theo发布了新的文献求助10
16秒前
Jasper应助一水禾桉采纳,获得10
17秒前
酷波er应助ll采纳,获得10
17秒前
skx完成签到,获得积分10
17秒前
Kevin完成签到,获得积分10
18秒前
19秒前
小雪糕发布了新的文献求助10
19秒前
TJC发布了新的文献求助10
20秒前
123123发布了新的文献求助10
20秒前
完美世界应助芒果柠檬采纳,获得10
20秒前
研友_VZG7GZ应助潇洒的布偶采纳,获得10
21秒前
遛狗君发布了新的文献求助10
21秒前
1111完成签到,获得积分10
22秒前
1111发布了新的文献求助10
24秒前
Jasper应助娜娜子欧采纳,获得10
24秒前
平淡的中心完成签到,获得积分10
28秒前
29秒前
无情的匪完成签到 ,获得积分10
32秒前
33秒前
遛狗君完成签到,获得积分10
34秒前
阿曾完成签到 ,获得积分10
34秒前
34秒前
35秒前
姜然完成签到,获得积分10
35秒前
ljn0406完成签到,获得积分10
35秒前
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999264
求助须知:如何正确求助?哪些是违规求助? 3538622
关于积分的说明 11274738
捐赠科研通 3277531
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080