Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes

光学相干层析成像 神经纤维层 青光眼 视网膜 眼科 人工智能 医学 计算机科学
作者
Christopher Bowd,Akram Belghith,Linda M. Zangwill,Mark Christopher,Michael H. Goldbaum,Rui Fan,Jasmin Rezapour,Sasan Moghimi,Alireza Kamalipour,Huiyuan Hou,Robert N. Weinreb
出处
期刊:American Journal of Ophthalmology [Elsevier BV]
卷期号:236: 298-308 被引量:19
标识
DOI:10.1016/j.ajo.2021.11.008
摘要

Purpose

To compare convolutional neural network (CNN) analysis of en face vessel density images to gradient boosting classifier (GBC) analysis of instrument-provided, feature-based optical coherence tomography angiography (OCTA) vessel density measurements and OCT retinal nerve fiber layer (RNFL) thickness measurements for classifying healthy and glaucomatous eyes.

Design

Comparison of diagnostic approaches.

Methods

A total of 130 eyes of 80 healthy individuals and 275 eyes of 185 glaucoma patients with optic nerve head (ONH) OCTA and OCT imaging were included. Classification performance of a VGG16 CNN trained and tested on entire en face 4.5 × 4.5-mm radial peripapillary capillary OCTA ONH images was compared to the performance of separate GBC models trained and tested on standard OCTA and OCT measurements. Five-fold cross-validation was used to test predictions for CNNs and GBCs. Areas under the precision recall curves (AUPRC) were calculated to control for training/test set size imbalance and were compared.

Results

Adjusted AUPRCs for GBC models were 0.89 (95% CI = 0.82, 0.92) for whole image vessel density GBC, 0.89 (0.83, 0.92) for whole image capillary density GBC, 0.91 (0.88, 0.93) for combined whole image vessel and whole image capillary density GBC, and 0.93 (0.91, 095) for RNFL thickness GBC. The adjusted AUPRC using CNN analysis of en face vessel density images was 0.97 (0.95, 0.99) resulting in significantly improved classification compared to GBC OCTA-based results and GBC OCT-based results (P ≤ 0.01 for all comparisons).

Conclusion

Deep learning en face image analysis improves on feature-based GBC models for classifying healthy and glaucoma eyes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyxxx完成签到,获得积分10
刚刚
满天星辰发布了新的文献求助10
1秒前
Ava应助好叭采纳,获得10
1秒前
Rita应助yuqinghui98采纳,获得10
1秒前
Hello应助PQ采纳,获得10
1秒前
3秒前
4秒前
忐忑的尔蝶完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
4秒前
烟花应助Finley采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Mila发布了新的文献求助20
5秒前
6秒前
6秒前
7秒前
知12完成签到,获得积分10
7秒前
蝉鸣完成签到,获得积分10
7秒前
抱抱是只可爱小猫完成签到,获得积分10
7秒前
悦耳的芒果完成签到,获得积分10
8秒前
8秒前
8秒前
顺心靖雁完成签到,获得积分10
9秒前
上官若男应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
最短的咒发布了新的文献求助10
10秒前
俊逸老太发布了新的文献求助10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
渡111应助科研通管家采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
彭于晏应助愉快新筠采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650