Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes

光学相干层析成像 神经纤维层 青光眼 视网膜 眼科 人工智能 医学 计算机科学
作者
Christopher Bowd,Akram Belghith,Linda M. Zangwill,Mark Christopher,Michael H. Goldbaum,Rui Fan,Jasmin Rezapour,Sasan Moghimi,Alireza Kamalipour,Huiyuan Hou,Robert N. Weinreb
出处
期刊:American Journal of Ophthalmology [Elsevier]
卷期号:236: 298-308 被引量:19
标识
DOI:10.1016/j.ajo.2021.11.008
摘要

Purpose

To compare convolutional neural network (CNN) analysis of en face vessel density images to gradient boosting classifier (GBC) analysis of instrument-provided, feature-based optical coherence tomography angiography (OCTA) vessel density measurements and OCT retinal nerve fiber layer (RNFL) thickness measurements for classifying healthy and glaucomatous eyes.

Design

Comparison of diagnostic approaches.

Methods

A total of 130 eyes of 80 healthy individuals and 275 eyes of 185 glaucoma patients with optic nerve head (ONH) OCTA and OCT imaging were included. Classification performance of a VGG16 CNN trained and tested on entire en face 4.5 × 4.5-mm radial peripapillary capillary OCTA ONH images was compared to the performance of separate GBC models trained and tested on standard OCTA and OCT measurements. Five-fold cross-validation was used to test predictions for CNNs and GBCs. Areas under the precision recall curves (AUPRC) were calculated to control for training/test set size imbalance and were compared.

Results

Adjusted AUPRCs for GBC models were 0.89 (95% CI = 0.82, 0.92) for whole image vessel density GBC, 0.89 (0.83, 0.92) for whole image capillary density GBC, 0.91 (0.88, 0.93) for combined whole image vessel and whole image capillary density GBC, and 0.93 (0.91, 095) for RNFL thickness GBC. The adjusted AUPRC using CNN analysis of en face vessel density images was 0.97 (0.95, 0.99) resulting in significantly improved classification compared to GBC OCTA-based results and GBC OCT-based results (P ≤ 0.01 for all comparisons).

Conclusion

Deep learning en face image analysis improves on feature-based GBC models for classifying healthy and glaucoma eyes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀冰香完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助adazbd采纳,获得10
1秒前
欢喜可愁发布了新的文献求助10
1秒前
277完成签到,获得积分10
2秒前
狂野芷卉发布了新的文献求助10
2秒前
2秒前
cf2v发布了新的文献求助10
2秒前
tph发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
顾矜应助GKT采纳,获得10
4秒前
willow完成签到,获得积分10
4秒前
单纯紫寒完成签到,获得积分20
5秒前
思源应助禤禤采纳,获得10
5秒前
psyYang完成签到,获得积分10
7秒前
zzaswwd完成签到,获得积分10
7秒前
单纯紫寒发布了新的文献求助10
8秒前
LKIU发布了新的文献求助50
8秒前
000000发布了新的文献求助10
8秒前
9秒前
伏坎完成签到,获得积分10
9秒前
10秒前
10秒前
Akim应助erfc采纳,获得10
10秒前
华仔应助chenjun7080采纳,获得30
10秒前
11秒前
11秒前
11秒前
SciGPT应助277采纳,获得30
12秒前
13秒前
竹落笙笙发布了新的文献求助10
13秒前
14秒前
14秒前
江问鱼完成签到,获得积分10
15秒前
mnliao发布了新的文献求助10
15秒前
15秒前
TuZhuling发布了新的文献求助10
16秒前
qichen0566发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546815
求助须知:如何正确求助?哪些是违规求助? 3123829
关于积分的说明 9357111
捐赠科研通 2822447
什么是DOI,文献DOI怎么找? 1551477
邀请新用户注册赠送积分活动 723475
科研通“疑难数据库(出版商)”最低求助积分说明 713766