电解质
法拉第效率
阳极
材料科学
阴极
锂(药物)
金属
钝化
相间
化学工程
无机化学
电池(电)
电极
金属锂
纳米技术
化学
图层(电子)
冶金
物理化学
内分泌学
功率(物理)
量子力学
遗传学
工程类
物理
医学
生物
作者
Thuy Duong Pham,Kyung‐Koo Lee
出处
期刊:Small
[Wiley]
日期:2021-04-01
卷期号:17 (20)
被引量:85
标识
DOI:10.1002/smll.202100133
摘要
So far, the practical application of Li metal batteries has been hindered by the undesirable formation of Li dendrites and low Coulombic efficiencies (CEs). Herein, 1,2-diethoxyethane (DEE) is proposed as a new electrolytic solvent for lithium metal batteries (LMBs), and the performances of 1.0 m LiFSI in DEE are evaluated. Because of the low dielectric constant and dipole moment of DEE, the majority of the FSI- exists in associated states like contact ion pairs and aggregates, which is similar to the highly concentrated electrolytes. These associated complexes are involved in the reduction reaction on the Li metal anode, forming sound solid electrolyte interphase layers. Furthermore, free FSI- ions in DEE are observed to participate in the formation of cathode electrolyte interphase layers. These passivation layers not only suppress dendrite growth on the Li anode but also prevent unwanted side-reactions on the LiFePO4 cathode. The average CE of the Li||Cu cells in LiFSI-DEE is observed to be 98.0%. Moreover, LiFSI-DEE also plays an important role in enhancing the cycling stability of the Li||LiFP cell with a capacity retention of 93.5% after 200 cycles. These results demonstrate the benefits of LiFSI-DEE, which creates new possibilities for high-energy-density rechargeable LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI