Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

均方误差 卫星 遥感 卫星图像 环境科学 产量(工程) 随机森林 比例(比率) 计算机科学 统计 气象学 算法 数学 地理 地图学 工程类 机器学习 材料科学 冶金 航空航天工程
作者
Ana Cláudia dos Santos Luciano,Michelle Cristina Araújo Picoli,Daniel Garbellini Duft,Jansle Vieira Rocha,Manoel Regis Lima Verde Leal,Guerric Le Maire
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106063-106063 被引量:37
标识
DOI:10.1016/j.compag.2021.106063
摘要

Abstract Sugarcane plays an important role in food and energy production in Brazil and worldwide. The large availability of satellite sensors and advanced techniques for processing data have improved the forecasting sugarcane yield on a local and global scale, but more work is needed on exploiting the synergy between remote sensing, meteorological and agronomic data. In this study, we combined such data sources to forecast sugarcane yield using a random forest (RF) algorithm on an extensive area of 50,000 ha, over four years. Images from Landsat satellites were processed to time series of surface reflectance and spectral indices. The approach focused on the development of predictive models which only used data acquired and accessible several months before the harvest. First, three RF models were calibrated with different predictors to forecast the sugarcane yield at harvest: using Landsat satellite images and meteorological data (RF1); agronomic and meteorological data (RF2); a combination of Landsat satellite images, agronomic and meteorological data (RF3). As a comparison, we also tested the influence of including knowledge on the future harvest date in the models RF2 and RF3 (RF4 and RF5). The average values of R2 for RF1, RF2, and RF3 were 0.66, 0.50 and 0.74, respectively. The model with the highest values of R2 (RF3) had a Root Mean Square Error (RMSE) of 9.9 ton ha−1 on yield forecast, approximately 15% of the yield average. Including the harvest date improved the RF2 and RF3 models to reach R2 = 0.69 and RMSE = 10.8 ton ha−1 for RF4, and R2 = 0.76 and RMSE of 9.4 ton ha−1 for RF5. A blind forecasting test for the 2016 yields showed similar prediction than the forecast made by in situ field expertise. This result has the potential to assist management of sugarcane production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tqqwerty完成签到,获得积分10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
丹丹丹应助科研通管家采纳,获得10
2秒前
科研乞丐应助科研通管家采纳,获得20
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
丹丹丹应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
丹丹丹应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
宋慧茹完成签到,获得积分10
4秒前
8秒前
wanghao婷发布了新的文献求助10
9秒前
Lucas应助无烛的夜晚采纳,获得10
10秒前
安好发布了新的文献求助10
11秒前
11秒前
怀忑完成签到,获得积分10
12秒前
13秒前
13秒前
科研通AI6应助鲤鱼翰采纳,获得10
14秒前
小蘑菇应助wanghao婷采纳,获得10
15秒前
静翕完成签到 ,获得积分10
15秒前
mzh发布了新的文献求助10
16秒前
科研通AI6应助梨花谷的猫采纳,获得10
17秒前
cizy不爱科研了完成签到,获得积分10
17秒前
ldy发布了新的文献求助10
17秒前
英俊的铭应助慢慢采纳,获得10
18秒前
18秒前
过眼云烟发布了新的文献求助10
20秒前
22秒前
林妹妹完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416997
求助须知:如何正确求助?哪些是违规求助? 4533109
关于积分的说明 14138172
捐赠科研通 4449179
什么是DOI,文献DOI怎么找? 2440630
邀请新用户注册赠送积分活动 1432456
关于科研通互助平台的介绍 1409858