Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

均方误差 卫星 遥感 卫星图像 环境科学 产量(工程) 随机森林 比例(比率) 计算机科学 统计 气象学 算法 数学 地理 地图学 工程类 机器学习 材料科学 冶金 航空航天工程
作者
Ana Cláudia dos Santos Luciano,Michelle Cristina Araújo Picoli,Daniel Garbellini Duft,Jansle Vieira Rocha,Manoel Regis Lima Verde Leal,Guerric Le Maire
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106063-106063 被引量:37
标识
DOI:10.1016/j.compag.2021.106063
摘要

Abstract Sugarcane plays an important role in food and energy production in Brazil and worldwide. The large availability of satellite sensors and advanced techniques for processing data have improved the forecasting sugarcane yield on a local and global scale, but more work is needed on exploiting the synergy between remote sensing, meteorological and agronomic data. In this study, we combined such data sources to forecast sugarcane yield using a random forest (RF) algorithm on an extensive area of 50,000 ha, over four years. Images from Landsat satellites were processed to time series of surface reflectance and spectral indices. The approach focused on the development of predictive models which only used data acquired and accessible several months before the harvest. First, three RF models were calibrated with different predictors to forecast the sugarcane yield at harvest: using Landsat satellite images and meteorological data (RF1); agronomic and meteorological data (RF2); a combination of Landsat satellite images, agronomic and meteorological data (RF3). As a comparison, we also tested the influence of including knowledge on the future harvest date in the models RF2 and RF3 (RF4 and RF5). The average values of R2 for RF1, RF2, and RF3 were 0.66, 0.50 and 0.74, respectively. The model with the highest values of R2 (RF3) had a Root Mean Square Error (RMSE) of 9.9 ton ha−1 on yield forecast, approximately 15% of the yield average. Including the harvest date improved the RF2 and RF3 models to reach R2 = 0.69 and RMSE = 10.8 ton ha−1 for RF4, and R2 = 0.76 and RMSE of 9.4 ton ha−1 for RF5. A blind forecasting test for the 2016 yields showed similar prediction than the forecast made by in situ field expertise. This result has the potential to assist management of sugarcane production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ewind完成签到 ,获得积分10
1秒前
共享精神应助俊逸书琴采纳,获得10
2秒前
2秒前
小皮蛋完成签到,获得积分10
3秒前
豆豆完成签到,获得积分10
3秒前
leec应助星辰坠于海采纳,获得10
4秒前
5秒前
6秒前
刘彤完成签到,获得积分0
6秒前
依小米完成签到 ,获得积分10
8秒前
科研通AI6应助yyy采纳,获得10
10秒前
11秒前
脑洞疼应助江洋大盗采纳,获得10
11秒前
12秒前
蜗牛查文献完成签到,获得积分10
13秒前
幸运小狗完成签到,获得积分10
14秒前
领导范儿应助科研通管家采纳,获得10
15秒前
Mic应助科研通管家采纳,获得10
15秒前
宅多点应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
宅多点应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得30
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
niNe3YUE应助科研通管家采纳,获得10
16秒前
wanci应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
Jared应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870