Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

均方误差 卫星 遥感 卫星图像 环境科学 产量(工程) 随机森林 比例(比率) 计算机科学 统计 气象学 算法 数学 地理 地图学 工程类 机器学习 材料科学 冶金 航空航天工程
作者
Ana Cláudia dos Santos Luciano,Michelle Cristina Araújo Picoli,Daniel Garbellini Duft,Jansle Vieira Rocha,Manoel Regis Lima Verde Leal,Guerric Le Maire
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:184: 106063-106063 被引量:37
标识
DOI:10.1016/j.compag.2021.106063
摘要

Abstract Sugarcane plays an important role in food and energy production in Brazil and worldwide. The large availability of satellite sensors and advanced techniques for processing data have improved the forecasting sugarcane yield on a local and global scale, but more work is needed on exploiting the synergy between remote sensing, meteorological and agronomic data. In this study, we combined such data sources to forecast sugarcane yield using a random forest (RF) algorithm on an extensive area of 50,000 ha, over four years. Images from Landsat satellites were processed to time series of surface reflectance and spectral indices. The approach focused on the development of predictive models which only used data acquired and accessible several months before the harvest. First, three RF models were calibrated with different predictors to forecast the sugarcane yield at harvest: using Landsat satellite images and meteorological data (RF1); agronomic and meteorological data (RF2); a combination of Landsat satellite images, agronomic and meteorological data (RF3). As a comparison, we also tested the influence of including knowledge on the future harvest date in the models RF2 and RF3 (RF4 and RF5). The average values of R2 for RF1, RF2, and RF3 were 0.66, 0.50 and 0.74, respectively. The model with the highest values of R2 (RF3) had a Root Mean Square Error (RMSE) of 9.9 ton ha−1 on yield forecast, approximately 15% of the yield average. Including the harvest date improved the RF2 and RF3 models to reach R2 = 0.69 and RMSE = 10.8 ton ha−1 for RF4, and R2 = 0.76 and RMSE of 9.4 ton ha−1 for RF5. A blind forecasting test for the 2016 yields showed similar prediction than the forecast made by in situ field expertise. This result has the potential to assist management of sugarcane production.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卷卷完成签到,获得积分10
1秒前
2秒前
深情安青应助笨鸟先飞采纳,获得10
2秒前
3秒前
3秒前
五十完成签到,获得积分10
3秒前
宇文沛岚完成签到,获得积分10
3秒前
hejeamy发布了新的文献求助10
3秒前
3秒前
4秒前
英俊的铭应助无名采纳,获得10
4秒前
4秒前
Yi发布了新的文献求助10
5秒前
6秒前
比卜不完成签到,获得积分10
6秒前
弗洛伊德完成签到 ,获得积分10
7秒前
Yi发布了新的文献求助10
7秒前
7秒前
7秒前
脑洞疼应助Alan采纳,获得10
8秒前
英俊的铭应助LaLaC采纳,获得10
8秒前
8秒前
爆米花应助Monica采纳,获得10
9秒前
9秒前
Anoxra完成签到 ,获得积分10
10秒前
不会发芽的土豆泥完成签到,获得积分10
10秒前
Alvin完成签到,获得积分10
10秒前
科研通AI6应助xzl采纳,获得30
10秒前
小李完成签到,获得积分10
11秒前
11秒前
是真的不吃鱼完成签到 ,获得积分10
11秒前
msk完成签到 ,获得积分10
12秒前
发发旦旦完成签到,获得积分10
12秒前
wen发布了新的文献求助10
12秒前
不安的宛丝完成签到,获得积分10
13秒前
李健应助心楠采纳,获得30
13秒前
dandandan完成签到 ,获得积分10
13秒前
bbb发布了新的文献求助10
13秒前
笨鸟先飞发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186