Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

均方误差 卫星 遥感 卫星图像 环境科学 产量(工程) 随机森林 比例(比率) 计算机科学 统计 气象学 算法 数学 地理 地图学 工程类 机器学习 航空航天工程 冶金 材料科学
作者
Ana Cláudia dos Santos Luciano,Michelle Cristina Araújo Picoli,Daniel Garbellini Duft,Jansle Vieira Rocha,Manoel Regis Lima Verde Leal,Guerric Le Maire
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:184: 106063-106063 被引量:37
标识
DOI:10.1016/j.compag.2021.106063
摘要

Abstract Sugarcane plays an important role in food and energy production in Brazil and worldwide. The large availability of satellite sensors and advanced techniques for processing data have improved the forecasting sugarcane yield on a local and global scale, but more work is needed on exploiting the synergy between remote sensing, meteorological and agronomic data. In this study, we combined such data sources to forecast sugarcane yield using a random forest (RF) algorithm on an extensive area of 50,000 ha, over four years. Images from Landsat satellites were processed to time series of surface reflectance and spectral indices. The approach focused on the development of predictive models which only used data acquired and accessible several months before the harvest. First, three RF models were calibrated with different predictors to forecast the sugarcane yield at harvest: using Landsat satellite images and meteorological data (RF1); agronomic and meteorological data (RF2); a combination of Landsat satellite images, agronomic and meteorological data (RF3). As a comparison, we also tested the influence of including knowledge on the future harvest date in the models RF2 and RF3 (RF4 and RF5). The average values of R2 for RF1, RF2, and RF3 were 0.66, 0.50 and 0.74, respectively. The model with the highest values of R2 (RF3) had a Root Mean Square Error (RMSE) of 9.9 ton ha−1 on yield forecast, approximately 15% of the yield average. Including the harvest date improved the RF2 and RF3 models to reach R2 = 0.69 and RMSE = 10.8 ton ha−1 for RF4, and R2 = 0.76 and RMSE of 9.4 ton ha−1 for RF5. A blind forecasting test for the 2016 yields showed similar prediction than the forecast made by in situ field expertise. This result has the potential to assist management of sugarcane production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助独特的翠芙采纳,获得10
1秒前
wam关闭了wam文献求助
1秒前
2秒前
RoyChen发布了新的文献求助30
2秒前
Benjamin发布了新的文献求助10
3秒前
3秒前
小二郎应助huapeng采纳,获得10
4秒前
CZLhaust发布了新的文献求助10
5秒前
亦犹未进完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Kai完成签到,获得积分10
6秒前
我是老大应助甜蜜的道天采纳,获得10
7秒前
7秒前
7秒前
刺猬崔发布了新的文献求助10
8秒前
ZXCVB应助寂寞的灵采纳,获得10
8秒前
路豐遙完成签到,获得积分10
8秒前
一骑绝尘完成签到,获得积分10
8秒前
rxj发布了新的文献求助10
8秒前
王檬完成签到,获得积分10
8秒前
萌大发布了新的文献求助10
9秒前
能干的邹完成签到,获得积分10
9秒前
9秒前
Minguk完成签到,获得积分20
9秒前
CZLhaust完成签到,获得积分10
10秒前
Akim应助陈住气采纳,获得10
10秒前
Lionel发布了新的文献求助20
10秒前
Yonina发布了新的文献求助10
10秒前
王檬发布了新的文献求助10
11秒前
罗汉发布了新的文献求助10
12秒前
小钱全发布了新的文献求助10
12秒前
wq发布了新的文献求助10
13秒前
13秒前
帅仁123完成签到,获得积分20
13秒前
二胡发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978978
求助须知:如何正确求助?哪些是违规求助? 3522830
关于积分的说明 11215177
捐赠科研通 3260355
什么是DOI,文献DOI怎么找? 1799883
邀请新用户注册赠送积分活动 878713
科研通“疑难数据库(出版商)”最低求助积分说明 807060