Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

均方误差 卫星 遥感 卫星图像 环境科学 产量(工程) 随机森林 比例(比率) 计算机科学 统计 气象学 算法 数学 地理 地图学 工程类 机器学习 材料科学 冶金 航空航天工程
作者
Ana Cláudia dos Santos Luciano,Michelle Cristina Araújo Picoli,Daniel Garbellini Duft,Jansle Vieira Rocha,Manoel Regis Lima Verde Leal,Guerric Le Maire
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:184: 106063-106063 被引量:37
标识
DOI:10.1016/j.compag.2021.106063
摘要

Abstract Sugarcane plays an important role in food and energy production in Brazil and worldwide. The large availability of satellite sensors and advanced techniques for processing data have improved the forecasting sugarcane yield on a local and global scale, but more work is needed on exploiting the synergy between remote sensing, meteorological and agronomic data. In this study, we combined such data sources to forecast sugarcane yield using a random forest (RF) algorithm on an extensive area of 50,000 ha, over four years. Images from Landsat satellites were processed to time series of surface reflectance and spectral indices. The approach focused on the development of predictive models which only used data acquired and accessible several months before the harvest. First, three RF models were calibrated with different predictors to forecast the sugarcane yield at harvest: using Landsat satellite images and meteorological data (RF1); agronomic and meteorological data (RF2); a combination of Landsat satellite images, agronomic and meteorological data (RF3). As a comparison, we also tested the influence of including knowledge on the future harvest date in the models RF2 and RF3 (RF4 and RF5). The average values of R2 for RF1, RF2, and RF3 were 0.66, 0.50 and 0.74, respectively. The model with the highest values of R2 (RF3) had a Root Mean Square Error (RMSE) of 9.9 ton ha−1 on yield forecast, approximately 15% of the yield average. Including the harvest date improved the RF2 and RF3 models to reach R2 = 0.69 and RMSE = 10.8 ton ha−1 for RF4, and R2 = 0.76 and RMSE of 9.4 ton ha−1 for RF5. A blind forecasting test for the 2016 yields showed similar prediction than the forecast made by in situ field expertise. This result has the potential to assist management of sugarcane production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
堀江真夏完成签到 ,获得积分10
1秒前
调皮蛋完成签到,获得积分10
2秒前
KX2024完成签到,获得积分10
3秒前
小石头完成签到,获得积分10
3秒前
leon完成签到 ,获得积分10
3秒前
小青椒应助hah采纳,获得50
4秒前
忆前尘完成签到,获得积分10
4秒前
今天他完成签到,获得积分10
4秒前
Abby完成签到,获得积分10
5秒前
6秒前
mitty完成签到 ,获得积分10
6秒前
秀丽千山发布了新的文献求助10
6秒前
复杂的可乐完成签到 ,获得积分10
7秒前
七里香完成签到 ,获得积分10
7秒前
少年完成签到,获得积分10
8秒前
欢喜的迎丝完成签到 ,获得积分10
9秒前
眯眯眼的龙猫完成签到,获得积分10
9秒前
bluehand完成签到,获得积分0
10秒前
BugWriter应助瞿采枫采纳,获得40
10秒前
伊一完成签到,获得积分10
10秒前
xiuxue424完成签到,获得积分10
11秒前
11秒前
快乐的胖子应助hah采纳,获得60
12秒前
AFF完成签到,获得积分10
13秒前
DrSong完成签到,获得积分10
14秒前
舒服的曼云完成签到,获得积分10
14秒前
15122303完成签到,获得积分10
15秒前
lzl008完成签到 ,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
小阳肖恩完成签到 ,获得积分10
17秒前
黄丹完成签到 ,获得积分10
17秒前
五个小白完成签到,获得积分10
18秒前
清脆冬卉完成签到,获得积分10
19秒前
Selonfer完成签到,获得积分10
19秒前
luozejun完成签到,获得积分10
19秒前
py999发布了新的文献求助10
20秒前
嗳7完成签到 ,获得积分10
20秒前
小瓶盖完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365