Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence

气候变化 环境科学 能源消耗 适应(眼睛) 消费(社会学) 环境资源管理 减缓气候变化 气候模式 环境经济学 计算机科学 经济 工程类 生物 电气工程 光学 物理 社会科学 社会学 生态学
作者
Debaditya Chakraborty,Arafat Alam,Saptarshi Chaudhuri,Hakan Başağaoğlu,Tulio Sulbaran,Sandeep Langar
出处
期刊:Applied Energy [Elsevier]
卷期号:291: 116807-116807 被引量:87
标识
DOI:10.1016/j.apenergy.2021.116807
摘要

In this paper, we present a newly developed eXplainable artificial intelligence (XAI) model to analyze the impacts of climate change on the cooling energy consumption (Ec) in buildings, predict long-term Ec under the new shared socioeconomic pathway (SSP) climate change scenarios, and explain the underlying reasons behind the predictions. Such analyses and future predictions are imperative to allow decision-makers and stakeholders to accomplish climate-resilient and sustainable development goals by leveraging the power of meaningful and trustworthy projections and insights. We demonstrated that the XAI is capable of predicting the Ec under future climate scenarios with high accuracy (R2>0.9) and reveals the critical inflection points of the daily average outdoor air temperature (Ta) beyond which the Ec increase exponentially. We applied the XAI model for residential and commercial buildings in hot–humid and mixed–humid climate regions to quantify the incremental impacts of climate change on Ec under the different SSPs. The XAI-based analysis concluded positive and persistent incremental changes in the Ec from 2020 to 2100 under all future SSP scenarios, with the maximum incremental impact of 24.5%, 33.3%, 57.8%, and 87.2% in hot–humid and 37.1%, 47.5%, 85.3%, and 121% in mixed–humid climate regions under the sustainable green energy (SSP126), business-as-usual (SSP245), challenges to adaptation (SSP370), and increased reliance on fossil fuels (SSP585) scenarios, respectively. Potential increases in the Ec in future climates could have significant adverse impacts on the local and regional economy if necessary adaptation and mitigation measures are not implemented a priori.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
6秒前
12秒前
林子夕发布了新的文献求助10
12秒前
完美世界应助NEW采纳,获得10
15秒前
Jodie发布了新的文献求助10
18秒前
25秒前
26秒前
NEW发布了新的文献求助10
29秒前
无牙仔冲发布了新的文献求助10
32秒前
NexusExplorer应助Bonnienuit采纳,获得10
33秒前
36秒前
1816013153发布了新的文献求助10
37秒前
大模型应助开心采纳,获得10
40秒前
福尔丘完成签到,获得积分10
40秒前
41秒前
48秒前
吃一口芝士完成签到 ,获得积分10
52秒前
taotao完成签到,获得积分10
52秒前
结实老师完成签到,获得积分10
53秒前
浮游应助wang采纳,获得10
54秒前
Megan发布了新的文献求助10
54秒前
唯12345完成签到,获得积分10
54秒前
58秒前
比和vv应助Jodie采纳,获得10
1分钟前
1分钟前
1分钟前
丘比特应助罗佳明采纳,获得10
1分钟前
明亮的小蘑菇完成签到 ,获得积分10
1分钟前
小二郎应助杨柳采纳,获得10
1分钟前
1分钟前
舒适的金针菇应助大豹子采纳,获得10
1分钟前
科研通AI6应助KongfeeL采纳,获得10
1分钟前
CBP发布了新的文献求助10
1分钟前
ding应助NEW采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558014
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670012
捐赠科研通 4584444
什么是DOI,文献DOI怎么找? 2514838
邀请新用户注册赠送积分活动 1489006
关于科研通互助平台的介绍 1459619