清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence

气候变化 环境科学 能源消耗 适应(眼睛) 消费(社会学) 环境资源管理 减缓气候变化 气候模式 环境经济学 计算机科学 经济 工程类 生态学 社会科学 物理 光学 社会学 电气工程 生物
作者
Debaditya Chakraborty,Arafat Alam,Saptarshi Chaudhuri,Hakan Başağaoğlu,Tulio Sulbaran,Sandeep Langar
出处
期刊:Applied Energy [Elsevier]
卷期号:291: 116807-116807 被引量:87
标识
DOI:10.1016/j.apenergy.2021.116807
摘要

In this paper, we present a newly developed eXplainable artificial intelligence (XAI) model to analyze the impacts of climate change on the cooling energy consumption (Ec) in buildings, predict long-term Ec under the new shared socioeconomic pathway (SSP) climate change scenarios, and explain the underlying reasons behind the predictions. Such analyses and future predictions are imperative to allow decision-makers and stakeholders to accomplish climate-resilient and sustainable development goals by leveraging the power of meaningful and trustworthy projections and insights. We demonstrated that the XAI is capable of predicting the Ec under future climate scenarios with high accuracy (R2>0.9) and reveals the critical inflection points of the daily average outdoor air temperature (Ta) beyond which the Ec increase exponentially. We applied the XAI model for residential and commercial buildings in hot–humid and mixed–humid climate regions to quantify the incremental impacts of climate change on Ec under the different SSPs. The XAI-based analysis concluded positive and persistent incremental changes in the Ec from 2020 to 2100 under all future SSP scenarios, with the maximum incremental impact of 24.5%, 33.3%, 57.8%, and 87.2% in hot–humid and 37.1%, 47.5%, 85.3%, and 121% in mixed–humid climate regions under the sustainable green energy (SSP126), business-as-usual (SSP245), challenges to adaptation (SSP370), and increased reliance on fossil fuels (SSP585) scenarios, respectively. Potential increases in the Ec in future climates could have significant adverse impacts on the local and regional economy if necessary adaptation and mitigation measures are not implemented a priori.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wakawaka完成签到 ,获得积分10
刚刚
28秒前
莨菪发布了新的文献求助10
29秒前
tt完成签到,获得积分10
38秒前
斯文的清涟完成签到,获得积分10
53秒前
59秒前
盈盈发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
我是老大应助莨菪采纳,获得10
1分钟前
CipherSage应助milu采纳,获得20
1分钟前
1分钟前
1分钟前
老马哥完成签到 ,获得积分0
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
CipherSage应助Penny采纳,获得10
2分钟前
2分钟前
Penny完成签到,获得积分10
2分钟前
Penny发布了新的文献求助10
3分钟前
盈盈发布了新的文献求助10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
meeteryu完成签到,获得积分10
3分钟前
SciGPT应助盈盈采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
哈哈完成签到 ,获得积分10
3分钟前
Alisha完成签到,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160