GVINS: Tightly Coupled GNSS–Visual–Inertial Fusion for Smooth and Consistent State Estimation

全球导航卫星系统应用 稳健性(进化) 计算机科学 里程计 初始化 伪距 卫星系统 实时计算 计算机视觉 人工智能 惯性导航系统 全球定位系统 惯性参考系 机器人 移动机器人 电信 物理 生物化学 化学 量子力学 基因 程序设计语言
作者
Shaozu Cao,Xiuyuan Lu,Shaojie Shen
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:38 (4): 2004-2021 被引量:117
标识
DOI:10.1109/tro.2021.3133730
摘要

Visual–inertial odometry (VIO) is known to suffer from drifting, especially over long-term runs. In this article, we present GVINS, a nonlinear optimization-based system that tightly fuses global navigation satellite system (GNSS) raw measurements with visual and inertial information for real-time and drift-free stateestimation. Our system aims to provide accurate global six-degree-of-freedom estimation under complex indoor–outdoor environments, where GNSS signals may be intermittent or even inaccessible. To establish the connection between global measurements and local states, a coarse-to-fine initialization procedure is proposed to efficiently calibrate the transformation online and initialize GNSS states from only a short window of measurements. The GNSS code pseudorange and Doppler shift measurements, along with visual and inertial information, are then modeled and used to constrain the system states in a factor graph framework. For complex and GNSS-unfriendly areas, the degenerate cases are discussed and carefully handled to ensure robustness. Thanks to the tightly coupled multisensor approach and system design, our system fully exploits the merits of three types of sensors and is able to seamlessly cope with the transition between indoor and outdoor environments, where satellites are lost and reacquired. We extensively evaluate the proposed system by both simulation and real-world experiments, and the results demonstrate that our system substantially suppresses the drift of the VIO and preserves the local accuracy in spite of noisy GNSS measurements. The versatility and robustness of the system are verified on large-scale data collected in challenging environments. In addition, experiments show that our system can still benefit from the presence of only one satellite, whereas at least four satellites are required for its conventional GNSS counterparts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whoami完成签到,获得积分10
刚刚
我是老大应助Dale采纳,获得10
刚刚
刚刚
小蘑菇应助卫三采纳,获得10
1秒前
疯狂的莫言完成签到,获得积分10
1秒前
xuan完成签到,获得积分10
1秒前
是的是的发布了新的文献求助30
1秒前
研友_VZG7GZ应助果冻小朋友采纳,获得10
2秒前
2秒前
霖霖发布了新的文献求助10
2秒前
ren完成签到,获得积分10
2秒前
3秒前
情怀应助wangyi邮箱采纳,获得10
3秒前
tuyoyo发布了新的文献求助20
3秒前
ABC完成签到,获得积分10
3秒前
whoami发布了新的文献求助10
3秒前
3秒前
4秒前
ccop完成签到,获得积分10
4秒前
tenz完成签到,获得积分10
4秒前
4秒前
哈哈哈发布了新的文献求助10
5秒前
小蘑菇应助wy1693207859采纳,获得10
5秒前
周老八发布了新的文献求助10
6秒前
6秒前
HXH完成签到,获得积分10
6秒前
6秒前
大个应助songjin采纳,获得10
7秒前
ABC发布了新的文献求助10
7秒前
秀丽黑裤完成签到,获得积分10
7秒前
小刘发布了新的文献求助10
7秒前
领导范儿应助毛毛采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
粉红色的滑动变阻器完成签到,获得积分10
9秒前
LSJ发布了新的文献求助10
10秒前
学术蝗虫发布了新的文献求助10
11秒前
周老八完成签到,获得积分10
11秒前
11秒前
lxp完成签到,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111