碳化
超级电容器
材料科学
法拉第效率
碳纤维
化学工程
电解质
电化学
储能
多孔性
比表面积
电极
纳米技术
复合材料
有机化学
化学
催化作用
功率(物理)
扫描电子显微镜
物理
工程类
复合数
物理化学
量子力学
作者
Yu-Shun Sung,Lu–Yin Lin
标识
DOI:10.1016/j.est.2021.102480
摘要
The zirconium-based metal organic framework, Universitetet i Oslo-66 (UIO-66), has attracted much attention as electroactive material for supercapacitors. The carbonization and acid treatment are applied to enhance the energy storage ability of UIO-66. The detail physical and electrochemical comparison are firstly discussed in this work to understand the carbonization and acid treatment effects. The octahedron morphology is obtained for UIO-66 and the derivatives with carbonization and acid treatments. The largely reduced size and rougher surface are obtained for the UIO-66 with carbonization and acid treatments (C-UIO-66-AT) due to the escape of carbon gas and removal of ZrO2. A higher specific capacitance (CF) of 117.7 F/g is obtained for the C-UIO-66-AT electrode than those of 0.61 and 32.78 F/g for UIO-66 and C-UIO-66, respectively, owing to the carbon nature with higher porosity and rougher surface for the former case. The solid-state supercapacitor (SSC) composed of C-UIO-66-AT electrodes and gel electrolyte shows a potential window of 0.9 V and a maximum specific energy of 2.133 Wh/kg at the specific power of 200 W/kg. The CF retention of 85% and Coulombic efficiency of 100% are also achieved for the SSC after 10,000 times repeated charge/discharge cycling process. This work proposes a simple method to largely enhance the energy storage ability of UIO-66. More discussion of carbonization and acid treatment parameters will be proposed in near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI