Improving energy storage ability of Universitetet i Oslo-66 as active material of supercapacitor using carbonization and acid treatment

碳化 超级电容器 材料科学 法拉第效率 碳纤维 化学工程 电解质 电化学 储能 多孔性 比表面积 电极 纳米技术 复合材料 有机化学 化学 催化作用 功率(物理) 扫描电子显微镜 物理 工程类 复合数 物理化学 量子力学
作者
Yu-Shun Sung,Lu–Yin Lin
出处
期刊:Journal of energy storage [Elsevier]
卷期号:37: 102480-102480 被引量:20
标识
DOI:10.1016/j.est.2021.102480
摘要

The zirconium-based metal organic framework, Universitetet i Oslo-66 (UIO-66), has attracted much attention as electroactive material for supercapacitors. The carbonization and acid treatment are applied to enhance the energy storage ability of UIO-66. The detail physical and electrochemical comparison are firstly discussed in this work to understand the carbonization and acid treatment effects. The octahedron morphology is obtained for UIO-66 and the derivatives with carbonization and acid treatments. The largely reduced size and rougher surface are obtained for the UIO-66 with carbonization and acid treatments (C-UIO-66-AT) due to the escape of carbon gas and removal of ZrO2. A higher specific capacitance (CF) of 117.7 F/g is obtained for the C-UIO-66-AT electrode than those of 0.61 and 32.78 F/g for UIO-66 and C-UIO-66, respectively, owing to the carbon nature with higher porosity and rougher surface for the former case. The solid-state supercapacitor (SSC) composed of C-UIO-66-AT electrodes and gel electrolyte shows a potential window of 0.9 V and a maximum specific energy of 2.133 Wh/kg at the specific power of 200 W/kg. The CF retention of 85% and Coulombic efficiency of 100% are also achieved for the SSC after 10,000 times repeated charge/discharge cycling process. This work proposes a simple method to largely enhance the energy storage ability of UIO-66. More discussion of carbonization and acid treatment parameters will be proposed in near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼雷完成签到,获得积分10
1秒前
1秒前
天天快乐应助喜洋洋采纳,获得10
1秒前
PANSIXUAN完成签到 ,获得积分10
2秒前
善良香岚发布了新的文献求助10
2秒前
2秒前
huizi完成签到,获得积分20
2秒前
RichardZ完成签到,获得积分10
2秒前
2秒前
左左发布了新的文献求助10
3秒前
执着的怜寒应助哈哈哈haha采纳,获得40
3秒前
Cassie完成签到 ,获得积分10
4秒前
4秒前
雄i完成签到,获得积分10
4秒前
Chenly完成签到,获得积分10
5秒前
科目三应助韭黄采纳,获得10
5秒前
5秒前
轻松笙发布了新的文献求助10
5秒前
7秒前
7秒前
a1oft发布了新的文献求助10
8秒前
觅桃乌龙完成签到,获得积分10
8秒前
9秒前
melodyezi发布了新的文献求助10
10秒前
10秒前
FFFFFFF应助柚子采纳,获得10
10秒前
9℃发布了新的文献求助10
10秒前
MailkMonk发布了新的文献求助10
10秒前
ZQ完成签到,获得积分10
10秒前
10秒前
wcy发布了新的文献求助10
11秒前
11秒前
尹博士完成签到,获得积分10
11秒前
迟大猫应助周士乐采纳,获得10
12秒前
追寻的筝发布了新的文献求助10
12秒前
喜洋洋发布了新的文献求助10
12秒前
NANA完成签到,获得积分10
12秒前
乐乐应助协和_子鱼采纳,获得10
12秒前
淇淇完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759