Deep learning based neuronal soma detection and counting for Alzheimer's disease analysis

索马 内嗅皮质 神经科学 卷积神经网络 计算机科学 神经元 生物神经网络 人工智能 模式识别(心理学) 深度学习 生物 海马体
作者
Qiufu Li,Yu Zhang,Hanbang Liang,Hui Gong,Liang Jiang,Qiong Liu,Linlin Shen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:203: 106023-106023 被引量:11
标识
DOI:10.1016/j.cmpb.2021.106023
摘要

Alzheimer's Disease (AD) is associated with neuronal damage and decrease. Micro-Optical Sectioning Tomography (MOST) provides an approach to acquire high-resolution images for neuron analysis in the whole-brain. Application of this technique to AD mouse brain enables us to investigate neuron changes during the progression of AD pathology. However, how to deal with the huge amount of data becomes the bottleneck. Using MOST technology, we acquired 3D whole-brain images of six AD mice, and sampled the imaging data of four regions in each mouse brain for AD progression analysis. To count the number of neurons, we proposed a deep learning based method by detecting neuronal soma in the neuronal images. In our method, the neuronal images were first cut into small cubes, then a Convolutional Neural Network (CNN) classifier was designed to detect the neuronal soma by classifying the cubes into three categories, "soma", "fiber", and "background". Compared with the manual method and currently available NeuroGPS software, our method demonstrates faster speed and higher accuracy in identifying neurons from the MOST images. By applying our method to various brain regions of 6-month-old and 12-month-old AD mice, we found that the amount of neurons in three brain regions (lateral entorhinal cortex, medial entorhinal cortex, and presubiculum) decreased slightly with the increase of age, which is consistent with the experimental results previously reported. This paper provides a new method to automatically handle the huge amounts of data and accurately identify neuronal soma from the MOST images. It also provides the potential possibility to construct a whole-brain neuron projection to reveal the impact of AD pathology on mouse brain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情怜蕾完成签到,获得积分10
刚刚
OKAY完成签到,获得积分0
1秒前
隋同学发布了新的文献求助10
2秒前
sos完成签到,获得积分10
3秒前
拉拉完成签到,获得积分10
3秒前
3秒前
Aceawei完成签到,获得积分10
4秒前
roking完成签到,获得积分10
6秒前
hm完成签到,获得积分10
6秒前
乐乐发布了新的文献求助10
6秒前
美丽觅夏完成签到 ,获得积分10
6秒前
可爱的香菇完成签到 ,获得积分10
7秒前
依人如梦完成签到 ,获得积分10
7秒前
7秒前
单于思雁完成签到,获得积分10
8秒前
桜棠完成签到,获得积分10
8秒前
平淡访冬完成签到 ,获得积分10
8秒前
漫漫完成签到,获得积分10
9秒前
117318完成签到,获得积分10
9秒前
高桥凉介完成签到,获得积分10
12秒前
漫漫发布了新的文献求助10
12秒前
小卡拉米完成签到,获得积分10
13秒前
lee完成签到,获得积分10
14秒前
yanxueyi完成签到 ,获得积分10
14秒前
木子完成签到,获得积分10
15秒前
所念皆星河完成签到 ,获得积分10
15秒前
啦啦啦123完成签到,获得积分10
15秒前
lingling完成签到 ,获得积分10
15秒前
16秒前
223311完成签到,获得积分10
16秒前
16秒前
Happy完成签到 ,获得积分10
17秒前
fan051500完成签到,获得积分10
18秒前
李爱国应助暖暖采纳,获得10
18秒前
180霸总完成签到 ,获得积分10
18秒前
瘤子完成签到,获得积分10
19秒前
哈哈环完成签到 ,获得积分10
19秒前
完美的凝蝶完成签到 ,获得积分10
20秒前
hehuan0520完成签到,获得积分10
20秒前
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818793
关于积分的说明 7922334
捐赠科研通 2478522
什么是DOI,文献DOI怎么找? 1320396
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443