亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-driven prediction of antiviral peptides based on periodicities of amino acid properties

支持向量机 机器学习 人工智能 计算机科学 财产(哲学) 特征选择 数据挖掘 功能(生物学) 主成分分析 计算生物学 生物系统 生物 生物化学 认识论 哲学 进化生物学
作者
Chris A. Kieslich,Fatemeh Alimirzaei,Hyeju Song,Matthew Do,Paige Hall
出处
期刊:Computer-aided chemical engineering 卷期号:: 2019-2024 被引量:15
标识
DOI:10.1016/b978-0-323-88506-5.50312-0
摘要

With the emergence of new pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), and the recent novel coronavirus pandemic, there has been an ever-increasing need for novel antimicrobial therapeutics. In this work, we have developed support vector machine (SVM) models to predict antiviral peptide sequences. Oscillations in physicochemical properties in protein sequences have been shown to be predictive of protein structure and function, and in the presented we work we have taken advantage of these known periodicities to develop models that predict antiviral peptide sequences. In developing the presented models, we first generated property factors by applying principal component analysis (PCA) to the AAindex dataset of 544 amino acid properties. We next converted peptide sequences into physicochemical vectors using 18 property factors resulting from the PCA. Fourier transforms were applied to the property factor vectors to measure the amplitude of the physicochemical oscillations, which served as the features to train our SVM models. To train and test the developed models we have used a publicly available database of antiviral peptides (http://crdd.osdd.net/servers/avppred/), and we have used cross-validation to train and tune models based on multiple training and testing sets. To further understand the physicochemical properties of antiviral peptides we have also applied a previously developed feature selection algorithm. Future work will be aimed at computationally designing novel antiviral therapeutics based on the developed machine learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shhoing应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
36秒前
yys完成签到,获得积分10
40秒前
FashionBoy应助Shawn_54采纳,获得10
1分钟前
1分钟前
guo发布了新的文献求助10
1分钟前
香蕉觅云应助guo采纳,获得30
1分钟前
1分钟前
ding应助Migue采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
NexusExplorer应助Sam采纳,获得10
3分钟前
Shawn_54发布了新的文献求助10
3分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得30
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
Ccccn完成签到,获得积分10
4分钟前
4分钟前
Sam发布了新的文献求助10
4分钟前
4分钟前
jeff完成签到,获得积分10
4分钟前
wmz完成签到 ,获得积分10
4分钟前
4分钟前
Sam完成签到 ,获得积分10
5分钟前
5分钟前
dulcetlemon完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538762
求助须知:如何正确求助?哪些是违规求助? 4625805
关于积分的说明 14596939
捐赠科研通 4566499
什么是DOI,文献DOI怎么找? 2503319
邀请新用户注册赠送积分活动 1481410
关于科研通互助平台的介绍 1452805