Data-driven prediction of antiviral peptides based on periodicities of amino acid properties

支持向量机 机器学习 人工智能 计算机科学 财产(哲学) 特征选择 数据挖掘 功能(生物学) 主成分分析 计算生物学 生物系统 生物 生物化学 认识论 哲学 进化生物学
作者
Chris A. Kieslich,Fatemeh Alimirzaei,Hyeju Song,Matthew Do,Paige Hall
出处
期刊:Computer-aided chemical engineering 卷期号:: 2019-2024 被引量:15
标识
DOI:10.1016/b978-0-323-88506-5.50312-0
摘要

With the emergence of new pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), and the recent novel coronavirus pandemic, there has been an ever-increasing need for novel antimicrobial therapeutics. In this work, we have developed support vector machine (SVM) models to predict antiviral peptide sequences. Oscillations in physicochemical properties in protein sequences have been shown to be predictive of protein structure and function, and in the presented we work we have taken advantage of these known periodicities to develop models that predict antiviral peptide sequences. In developing the presented models, we first generated property factors by applying principal component analysis (PCA) to the AAindex dataset of 544 amino acid properties. We next converted peptide sequences into physicochemical vectors using 18 property factors resulting from the PCA. Fourier transforms were applied to the property factor vectors to measure the amplitude of the physicochemical oscillations, which served as the features to train our SVM models. To train and test the developed models we have used a publicly available database of antiviral peptides (http://crdd.osdd.net/servers/avppred/), and we have used cross-validation to train and tune models based on multiple training and testing sets. To further understand the physicochemical properties of antiviral peptides we have also applied a previously developed feature selection algorithm. Future work will be aimed at computationally designing novel antiviral therapeutics based on the developed machine learning models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低易真完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
cmf发布了新的文献求助30
1秒前
西木发布了新的文献求助10
1秒前
leejh1发布了新的文献求助10
2秒前
Owen应助迅速的亦绿采纳,获得10
2秒前
丘比特应助上天的朱采纳,获得10
3秒前
nothing完成签到,获得积分10
3秒前
章半仙发布了新的文献求助10
3秒前
3秒前
空心完成签到,获得积分10
4秒前
JamesPei应助Maestro_S采纳,获得10
5秒前
5秒前
星空物语发布了新的文献求助10
5秒前
凌凌子完成签到 ,获得积分10
6秒前
6秒前
走四方发布了新的文献求助10
6秒前
unite 小丘完成签到,获得积分10
7秒前
7秒前
深情安青应助汤柏钧采纳,获得10
7秒前
8秒前
9秒前
Summer完成签到,获得积分10
9秒前
lq完成签到,获得积分10
9秒前
9秒前
墨雪归青发布了新的文献求助10
9秒前
无花果应助李龙龙采纳,获得10
9秒前
无敌发布了新的文献求助10
10秒前
ABAB完成签到,获得积分10
10秒前
10秒前
10秒前
inn发布了新的文献求助10
11秒前
踏实寒梅发布了新的文献求助10
12秒前
CC完成签到,获得积分10
12秒前
12秒前
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762