Data-driven prediction of antiviral peptides based on periodicities of amino acid properties

支持向量机 机器学习 人工智能 计算机科学 财产(哲学) 特征选择 数据挖掘 功能(生物学) 主成分分析 计算生物学 生物系统 生物 生物化学 认识论 哲学 进化生物学
作者
Chris A. Kieslich,Fatemeh Alimirzaei,Hyeju Song,Matthew Do,Paige Hall
出处
期刊:Computer-aided chemical engineering 卷期号:: 2019-2024 被引量:15
标识
DOI:10.1016/b978-0-323-88506-5.50312-0
摘要

With the emergence of new pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), and the recent novel coronavirus pandemic, there has been an ever-increasing need for novel antimicrobial therapeutics. In this work, we have developed support vector machine (SVM) models to predict antiviral peptide sequences. Oscillations in physicochemical properties in protein sequences have been shown to be predictive of protein structure and function, and in the presented we work we have taken advantage of these known periodicities to develop models that predict antiviral peptide sequences. In developing the presented models, we first generated property factors by applying principal component analysis (PCA) to the AAindex dataset of 544 amino acid properties. We next converted peptide sequences into physicochemical vectors using 18 property factors resulting from the PCA. Fourier transforms were applied to the property factor vectors to measure the amplitude of the physicochemical oscillations, which served as the features to train our SVM models. To train and test the developed models we have used a publicly available database of antiviral peptides (http://crdd.osdd.net/servers/avppred/), and we have used cross-validation to train and tune models based on multiple training and testing sets. To further understand the physicochemical properties of antiviral peptides we have also applied a previously developed feature selection algorithm. Future work will be aimed at computationally designing novel antiviral therapeutics based on the developed machine learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助Ich采纳,获得10
1秒前
小冯发布了新的文献求助10
1秒前
LaFee完成签到,获得积分10
2秒前
花花发布了新的文献求助10
2秒前
CipherSage应助BingHe采纳,获得10
2秒前
pearl发布了新的文献求助10
2秒前
只要平凡完成签到,获得积分10
3秒前
北过居庸完成签到,获得积分10
3秒前
4秒前
我是老大应助坚强百褶裙采纳,获得10
4秒前
4秒前
4秒前
5秒前
blablawindy发布了新的文献求助10
5秒前
5秒前
浮游应助mumumuzzz采纳,获得10
5秒前
张昭蓉完成签到,获得积分10
5秒前
6秒前
LeeWX完成签到,获得积分20
6秒前
7秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
奋斗的若云完成签到,获得积分10
9秒前
9秒前
anton完成签到,获得积分10
9秒前
单纯的又菱完成签到,获得积分10
9秒前
9秒前
小脑袋发布了新的文献求助10
9秒前
共享精神应助鲜艳的手链采纳,获得10
10秒前
Owen应助hhh采纳,获得10
10秒前
忽闻水完成签到,获得积分10
10秒前
元谷雪发布了新的文献求助30
10秒前
彳亍1117发布了新的文献求助10
10秒前
潇洒闭月发布了新的文献求助10
10秒前
11秒前
泥撑完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794