已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation

计算机科学 分割 人工智能 编码器 判别式 变压器 增采样 图像分割 像素 计算机视觉 模式识别(心理学) 图像(数学) 量子力学 操作系统 物理 电压
作者
Bingzhi Chen,Yishu Liu,Zheng Zhang,Guangming Lu,David Zhang
出处
期刊:Cornell University - arXiv 被引量:58
标识
DOI:10.48550/arxiv.2107.05274
摘要

Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years, convolutional encoder-decoder solutions have achieved substantial progress in the field of automatic medical image segmentation. Due to the inherent bias in the convolution operations, prior models mainly focus on local visual cues formed by the neighboring pixels, but fail to fully model the long-range contextual dependencies. In this paper, we propose a novel Transformer-based Attention Guided Network called TransAttUnet, in which the multi-level guided attention and multi-scale skip connection are designed to jointly enhance the performance of the semantical segmentation architecture. Inspired by Transformer, the self-aware attention (SAA) module with Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions among encoder features. Moreover, we also use additional multi-scale skip connections between decoder blocks to aggregate the upsampled features with different semantic scales. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the stacking of convolution layers and the consecutive sampling operations, finally improving the segmentation quality of medical images. Extensive experiments on multiple medical image segmentation datasets from different imaging modalities demonstrate that the proposed method consistently outperforms the state-of-the-art baselines. Our code and pre-trained models are available at: https://github.com/YishuLiu/TransAttUnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
felix发布了新的文献求助10
4秒前
NexusExplorer应助wangting采纳,获得10
8秒前
10秒前
饿哭了塞完成签到,获得积分10
11秒前
felix完成签到,获得积分10
11秒前
爱听歌的大地完成签到 ,获得积分10
11秒前
Ammr完成签到 ,获得积分10
11秒前
123456777完成签到 ,获得积分10
12秒前
14秒前
害羞龙猫完成签到 ,获得积分10
16秒前
NexusExplorer应助xingyan采纳,获得10
18秒前
鸭梨发布了新的文献求助10
18秒前
20秒前
科研通AI5应助起个名真难采纳,获得10
20秒前
gy完成签到 ,获得积分10
21秒前
Owen应助yhxwqkk采纳,获得10
21秒前
Percy完成签到 ,获得积分10
23秒前
赘婿应助8Rokeboy采纳,获得30
23秒前
24秒前
gougoudy完成签到,获得积分10
25秒前
玛卡巴卡完成签到 ,获得积分10
26秒前
细心青雪完成签到 ,获得积分10
26秒前
平常的凡白完成签到 ,获得积分10
27秒前
yupeijin完成签到,获得积分10
28秒前
29秒前
颜林林完成签到,获得积分10
29秒前
Whale完成签到 ,获得积分10
30秒前
HH完成签到 ,获得积分10
31秒前
chanyi完成签到,获得积分10
31秒前
白华苍松发布了新的文献求助10
31秒前
yhxwqkk发布了新的文献求助10
34秒前
34秒前
han完成签到,获得积分10
35秒前
hiaoyi完成签到 ,获得积分0
37秒前
38秒前
老马哥完成签到 ,获得积分0
38秒前
果砸完成签到 ,获得积分10
39秒前
39秒前
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544311
求助须知:如何正确求助?哪些是违规求助? 3121491
关于积分的说明 9347496
捐赠科研通 2819748
什么是DOI,文献DOI怎么找? 1550401
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713265