Tear metabolomics highlights new potential biomarkers for differentiating between Sjögren's syndrome and other causes of dry eye

代谢组学 干眼症 医学 眼科 皮肤病科 生物信息学 生物
作者
G. Urbanski,Sophie Assad,Floris Chabrun,Juan Manuel Chao de la Barca,Odile Blanchet,Gilles Simard,Guy Lenaers,Delphine Prunier‐Mirebeau,Philippe Gohier,Christian Lavigne,Pascal Reynier
出处
期刊:Ocular Surface [Elsevier]
卷期号:22: 110-116 被引量:15
标识
DOI:10.1016/j.jtos.2021.07.006
摘要

The lacrimal exocrinopathy of primary Sjögren's syndrome (pSS) is one of the main causes of severe dry eye syndrome and a burden for patients. Early recognition and treatment could prevent irreversible damage to lacrimal glands. The aim of this study was to find biomarkers in tears, using metabolomics and data mining approaches, in patients with newly-diagnosed pSS compared to other causes of dry eye syndrome.A prospective cohort of 40 pSS and 40 non-pSS Sicca patients with dryness was explored through a standardized targeted metabolomic approach using liquid chromatography coupled with mass spectrometry. A metabolomic signature predictive of the pSS status was sought out using linear (logistic regression with elastic-net regularization) and non-linear (random forests) machine learning architectures, after splitting the studied population into training, validation and test sets.Among the 104 metabolites accurately measured in tears, we identified a discriminant signature composed of nine metabolites (two amino acids: serine, aspartate; one biogenic amine: dopamine; six lipids: Lysophosphatidylcholine C16:1, C18:1, C18:2, sphingomyelin C16:0 and C22:3, and the phoshatidylcholine diacyl PCaa C42:4), with robust performances (ROC-AUC = 0.83) for predicting the pSS status. Adjustment for age, sex and anti-SSA antibodies did not disrupt the link between the metabolomic signature and the pSS status. The non-lipidic components also remained specific for pSS regardless of the dryness severity.Our results reveal a metabolomic signature for tears that distinguishes pSS from other dry eye syndromes and further highlight nine key metabolites of potential interest for early diagnosis and therapeutics of pSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴实香露完成签到,获得积分10
刚刚
帕提古丽发布了新的文献求助10
刚刚
CodeCraft应助ym采纳,获得10
刚刚
连冷安发布了新的文献求助10
刚刚
今后应助曾经的姒采纳,获得10
1秒前
锂炸发布了新的文献求助10
1秒前
桃铱铱发布了新的文献求助10
1秒前
me1on完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
2秒前
卢聪明完成签到,获得积分10
2秒前
azure发布了新的文献求助10
2秒前
3秒前
4秒前
小马甲应助jah采纳,获得10
4秒前
tsqiiiiiii完成签到,获得积分10
4秒前
852应助LLLL采纳,获得10
4秒前
11发布了新的文献求助10
4秒前
暮尘尘发布了新的文献求助10
4秒前
5秒前
朴实香露发布了新的文献求助10
5秒前
健壮小蚂蚁完成签到,获得积分10
5秒前
7秒前
邓云瀚完成签到,获得积分10
7秒前
jintian应助复杂不二采纳,获得10
7秒前
初余发布了新的文献求助10
8秒前
lutra发布了新的文献求助10
8秒前
8秒前
9秒前
英俊的铭应助潇洒慕卉采纳,获得10
9秒前
赘婿应助兢听采纳,获得10
10秒前
10秒前
顾矜应助明珠采纳,获得10
10秒前
果断的毛完成签到,获得积分10
10秒前
Sam完成签到,获得积分10
10秒前
爆米花应助锂炸采纳,获得10
10秒前
白芍发布了新的文献求助10
11秒前
甜甜玫瑰应助saikun采纳,获得10
12秒前
12秒前
pop完成签到,获得积分10
12秒前
暮尘尘完成签到,获得积分10
12秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3232602
求助须知:如何正确求助?哪些是违规求助? 2879404
关于积分的说明 8211127
捐赠科研通 2546860
什么是DOI,文献DOI怎么找? 1376416
科研通“疑难数据库(出版商)”最低求助积分说明 647609
邀请新用户注册赠送积分活动 622915