已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Service chatbots: A systematic review

聊天机器人 计算机科学 服务(商务) 系统回顾 对话 公制(单位) 万维网 数据科学 人工智能 工程类 语言学 哲学 运营管理 经济 梅德林 政治学 法学 经济
作者
Sinarwati Mohamad Suhaili,Naomie Salim,Mohamad Nazim Jambli
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:184: 115461-115461 被引量:15
标识
DOI:10.1016/j.eswa.2021.115461
摘要

• This review conducts a quantitative analysis of state-of-the-art service chatbot. • Deep and reinforcement learnings dominate the most used chatbot design techniques. • Twitter dataset emerges to be the most popular dataset used for chatbot evaluation. • Accuracy becomes the most frequently used performance evaluation metric for chatbot. Chatbots or Conversational agents are the next significant technological leap in the field of conversational services, that is, enabling a device to communicate with a user upon receiving user requests in natural language. The device uses artificial intelligence and machine learning to respond to the user with automated responses. While this is a relatively new area of study, the application of this concept has increased substantially over the last few years. The technology is no longer limited to merely emulating human conversation but is also being increasingly used to answer questions, either in academic environments or in commercial uses, such as situations requiring assistants to seek reasons for customer dissatisfaction or recommending products and services. The primary purpose of this literature review is to identify and study the existing literature on cutting-edge technology in developing chatbots in terms of research trends, their components and techniques, datasets and domains used, as well as evaluation metrics most used between 2011 and 2020. Using the standard SLR guidelines designed by Kitchenham, this work adopts a systematic literature review approach and utilizes five prestigious scientific databases for identifying, extracting, and analyzing all relevant publications during the search. The related publications were filtered based on inclusion/exclusion criteria and quality assessment to obtain the final review paper. The results of the review indicate that the exploitation of deep learning and reinforcement learning architecture is the most used technique to understand users’ requests and to generate appropriate responses. Besides, we also found that the Twitter dataset (open domain) is the most popular dataset used for evaluation, followed by Airline Travel Information Systems (ATIS) (close domain) and Ubuntu Dialog Corpora (technical support) datasets. The SLR review also indicates that the open domain provided by the Twitter dataset, airline and technical support are the most common domains for chatbots. Moreover, the metrics utilized most often for evaluating chatbot performance (in descending order of popularity) were found to be accuracy, F1-Score, BLEU (Bilingual Evaluation Understudy), recall, human-evaluation, and precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dogontree发布了新的文献求助10
1秒前
中中发布了新的文献求助10
2秒前
Ava应助xmjy采纳,获得30
3秒前
冲冲冲发布了新的文献求助10
4秒前
4秒前
开放铅笔完成签到 ,获得积分10
8秒前
英姑应助dogontree采纳,获得10
8秒前
崔罗石发布了新的文献求助30
8秒前
烙饼完成签到,获得积分10
9秒前
亚亚完成签到,获得积分10
10秒前
xiuxiuzhang完成签到 ,获得积分10
10秒前
英姑应助无辜的傲安采纳,获得10
11秒前
Charon完成签到,获得积分10
11秒前
芜湖起飞完成签到 ,获得积分10
14秒前
简宁完成签到,获得积分10
15秒前
16秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
爱静静应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
爱静静应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
RSW应助王大贵采纳,获得20
18秒前
以乐完成签到 ,获得积分10
20秒前
20秒前
华仔应助文艺的雨寒采纳,获得10
21秒前
__发布了新的文献求助10
21秒前
kjding发布了新的文献求助10
22秒前
22秒前
23秒前
Qiqinnn发布了新的文献求助10
26秒前
寻道图强完成签到,获得积分0
27秒前
able发布了新的文献求助10
28秒前
科研通AI2S应助葛鲁采纳,获得10
30秒前
闵凝竹完成签到 ,获得积分10
33秒前
闪闪的妙竹完成签到 ,获得积分10
33秒前
Shrine完成签到,获得积分10
33秒前
崔罗石完成签到,获得积分10
34秒前
msk关注了科研通微信公众号
35秒前
38秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793483
关于积分的说明 7806709
捐赠科研通 2449737
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601314