亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HDPL: a hybrid descriptor for points and lines based on graph neural networks

模式识别(心理学) 人工智能 计算机科学 图形 卷积神经网络 特征(语言学) 计算机视觉 数学 理论计算机科学 哲学 语言学
作者
Zirui Guo,Huimin Lu,Qinghua Yu,Ruibin Guo,Junhao Xiao,Hongshan Yu
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
卷期号:48 (5): 737-744 被引量:2
标识
DOI:10.1108/ir-02-2021-0042
摘要

Purpose This paper aims to design a novel feature descriptor to improve the performance of feature matching in challenge scenes, such as low texture and wide-baseline scenes. Common descriptors are not suitable for low texture scenes and other challenging scenes mainly owing to encoding only one kind of features. The proposed feature descriptor considers multiple features and their locations, which is more expressive. Design/methodology/approach A graph neural network–based descriptors enhancement algorithm for feature matching is proposed. In this paper, point and line features are the primary concerns. In the graph, commonly used descriptors for points and lines constitute the nodes and the edges are determined by the geometric relationship between points and lines. After the graph convolution designed for incomplete join graph, enhanced descriptors are obtained. Findings Experiments are carried out in indoor, outdoor and low texture scenes. The experiments investigate the real-time performance, rotation invariance, scale invariance, viewpoint invariance and noise sensitivity of the descriptors in three types of scenes. The results show that the enhanced descriptors are robust to scene changes and can be used in wide-baseline matching. Originality/value A graph structure is designed to represent multiple features in an image. In the process of building graph structure, the geometric relation between multiple features is used to establish the edges. Furthermore, a novel hybrid descriptor for points and lines is obtained using graph convolutional neural network. This enhanced descriptor has the advantages of both point features and line features in feature matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮崇知发布了新的文献求助10
3秒前
美满雁芙完成签到 ,获得积分10
7秒前
彪壮的凡波完成签到,获得积分10
9秒前
哦豁完成签到 ,获得积分10
9秒前
比巴卜完成签到 ,获得积分10
13秒前
15秒前
22秒前
明亮剑完成签到 ,获得积分10
23秒前
橙子味的邱憨憨完成签到 ,获得积分10
31秒前
eye应助hp571采纳,获得10
32秒前
jyy应助调皮的浩天采纳,获得10
32秒前
32秒前
233完成签到 ,获得积分10
53秒前
ll完成签到 ,获得积分10
54秒前
ST发布了新的文献求助10
1分钟前
Mine完成签到,获得积分10
1分钟前
在水一方应助Mine采纳,获得10
1分钟前
Hello应助leanne采纳,获得10
1分钟前
谷千千完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
搜集达人应助俏皮绿蓉采纳,获得10
1分钟前
2分钟前
leanne发布了新的文献求助10
2分钟前
灰色白面鸮完成签到,获得积分10
2分钟前
2分钟前
东郭凝蝶完成签到 ,获得积分10
2分钟前
2分钟前
勇敢牛牛完成签到 ,获得积分10
2分钟前
2分钟前
DoctorG发布了新的文献求助10
2分钟前
2分钟前
我是老大应助DoctorG采纳,获得10
2分钟前
yaling完成签到,获得积分10
2分钟前
2分钟前
白切鸡大王完成签到,获得积分10
2分钟前
2分钟前
向莉完成签到 ,获得积分10
2分钟前
norman完成签到,获得积分20
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188