亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extreme learning Machine-based classifier for fault diagnosis of rotating Machinery using a residual network and continuous wavelet transform

极限学习机 残余物 人工智能 模式识别(心理学) 计算机科学 小波 人工神经网络 时域 分类器(UML) 连续小波变换 机器学习 小波变换 算法 离散小波变换 计算机视觉
作者
Wei Hao,Qinghua Zhang,Minghu Shang,Yu Gu
出处
期刊:Measurement [Elsevier BV]
卷期号:183: 109864-109864 被引量:68
标识
DOI:10.1016/j.measurement.2021.109864
摘要

• A ResNet-ELM framework is proposed for the fault diagnosis of rotating machinery. • The Resnet provided more advanced and significant fault features for the ELM. • Output information of the ELM is closer to sample labels. • The practicability of the ResNet-ELM was proved by means of an industrial dataset. • Our results prove compound faults are more challenging than single fault to diagnose. Effective fault diagnosis of rotating machinery is essential for the predictive maintenance of modern industries. In this study, a novel framework that combines a residual network (ResNet) as a backbone and an extreme learning machine (ELM) as a classifier (RNELM) is proposed to diagnose faults of rotating machinery. Firstly, continuous wavelet transform (CWT) is used to convert the raw time-domain signal into time–frequency domain images. Subsequently, the ResNet backbone in the framework extracts advanced features from the images for the ELM classifier, substantially improving the fault diagnosis performance. The performance of the framework is compared with four other methods using four evaluation metrics on datasets from Case Western Reserve University (CWRU), laboratory results and industrial applications. The experimental results show that the RNELM achieves outstanding results on the test samples of the three datasets, demonstrating the excellent performance and practicability of the proposed framework for fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
18秒前
31秒前
huangzsdy完成签到,获得积分10
34秒前
36秒前
量子星尘发布了新的文献求助10
38秒前
邹醉蓝完成签到,获得积分0
48秒前
52秒前
1分钟前
lanxinge完成签到 ,获得积分10
1分钟前
1分钟前
cornelialkx发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264