Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 内科学 病理
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:37
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感恩有你完成签到,获得积分10
1秒前
Ash完成签到 ,获得积分10
2秒前
张培元完成签到,获得积分10
2秒前
张晓允老师完成签到,获得积分10
2秒前
3秒前
玩命的十三完成签到 ,获得积分10
4秒前
5秒前
guojingjing发布了新的文献求助10
5秒前
Jasper应助gao采纳,获得10
6秒前
chengleigogo完成签到,获得积分10
9秒前
早日毕业发布了新的文献求助10
9秒前
郭浩峰完成签到,获得积分10
10秒前
10秒前
朝阳满意发布了新的文献求助10
10秒前
csx应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
xzy998应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
rainove完成签到,获得积分20
13秒前
西西发布了新的文献求助10
14秒前
Akim应助做梦采纳,获得10
15秒前
贤明给贤明的求助进行了留言
15秒前
余额发布了新的文献求助10
16秒前
a7662888完成签到,获得积分0
16秒前
早日毕业完成签到,获得积分20
17秒前
xxsukixx发布了新的文献求助10
19秒前
半山完成签到,获得积分10
20秒前
wendy_1006完成签到 ,获得积分10
20秒前
Akim应助飞流直下采纳,获得10
21秒前
不倒翁完成签到,获得积分10
22秒前
qqqq完成签到,获得积分10
22秒前
聪慧的从雪完成签到 ,获得积分10
23秒前
24秒前
25秒前
李想完成签到,获得积分10
25秒前
五小完成签到 ,获得积分10
25秒前
26秒前
SciGPT应助warhead采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565358
求助须知:如何正确求助?哪些是违规求助? 4650379
关于积分的说明 14690868
捐赠科研通 4592258
什么是DOI,文献DOI怎么找? 2519544
邀请新用户注册赠送积分活动 1491978
关于科研通互助平台的介绍 1463199