Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 病理 内科学
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:24
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
zxzx发布了新的文献求助10
2秒前
cat完成签到,获得积分10
3秒前
风趣琦发布了新的文献求助10
3秒前
山橘月完成签到,获得积分10
3秒前
充电宝应助sky采纳,获得10
3秒前
科研通AI6应助温彪采纳,获得10
3秒前
4秒前
共享精神应助林子采纳,获得10
4秒前
常温可乐完成签到,获得积分10
4秒前
SciGPT应助奇奇淼采纳,获得10
4秒前
酷波er应助淡淡的觅松采纳,获得10
5秒前
5秒前
5秒前
5秒前
酷炫完成签到,获得积分10
6秒前
伊雪儿发布了新的文献求助10
6秒前
乐乐乐乐乐完成签到,获得积分10
6秒前
YHJX完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI6应助小猪熊采纳,获得10
7秒前
Baneyhua发布了新的文献求助10
7秒前
7秒前
忧虑的乐驹完成签到,获得积分10
7秒前
在水一方应助Costing采纳,获得10
8秒前
8秒前
8秒前
8秒前
wanna发布了新的文献求助10
9秒前
sqz_df发布了新的文献求助30
9秒前
u9227完成签到 ,获得积分10
10秒前
10秒前
10秒前
那时花开应助喵了个咪采纳,获得10
10秒前
朴实傲霜完成签到,获得积分10
10秒前
林梓峰完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404697
求助须知:如何正确求助?哪些是违规求助? 4523152
关于积分的说明 14092354
捐赠科研通 4436849
什么是DOI,文献DOI怎么找? 2435295
邀请新用户注册赠送积分活动 1427595
关于科研通互助平台的介绍 1405985