Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 内科学 病理
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:24
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYao65发布了新的文献求助10
刚刚
YHJX完成签到,获得积分10
1秒前
博修发布了新的文献求助10
1秒前
彪壮的火车完成签到,获得积分10
1秒前
坦率的匪应助七月流火采纳,获得10
2秒前
siqi发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
小小MIX完成签到 ,获得积分10
3秒前
酷波er应助zzz采纳,获得30
3秒前
4秒前
Colin完成签到,获得积分10
4秒前
6666666666完成签到 ,获得积分10
4秒前
6秒前
汪少侠完成签到,获得积分10
7秒前
7秒前
8秒前
我是老大应助祖冰绿采纳,获得10
8秒前
此晴可待发布了新的文献求助10
8秒前
852应助EED采纳,获得10
8秒前
9秒前
9秒前
吃人陈完成签到,获得积分10
10秒前
10秒前
Arctic发布了新的文献求助10
10秒前
11秒前
11秒前
ccc发布了新的文献求助10
11秒前
黎明发布了新的文献求助10
11秒前
张海缘发布了新的文献求助10
12秒前
凌千颂关注了科研通微信公众号
13秒前
科研通AI2S应助阿钰采纳,获得10
13秒前
13秒前
北川完成签到,获得积分10
14秒前
风中的一德完成签到,获得积分10
14秒前
雅丽完成签到,获得积分10
15秒前
Deny发布了新的文献求助10
15秒前
16秒前
橘猫完成签到 ,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650