Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 病理 内科学
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:37
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾硕士发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
英俊的铭应助小李笑嘻嘻采纳,获得10
1秒前
2秒前
2秒前
2秒前
沉静胜发布了新的文献求助10
2秒前
3秒前
3秒前
梵莫完成签到,获得积分10
3秒前
Jiang完成签到,获得积分10
4秒前
阿尔卑斯完成签到,获得积分20
4秒前
4秒前
4秒前
s1y完成签到 ,获得积分10
4秒前
科研通AI6应助Alaska采纳,获得10
5秒前
兔子发布了新的文献求助10
5秒前
城九寒发布了新的文献求助10
5秒前
哭泣飞瑶发布了新的文献求助10
5秒前
科研通AI6应助承乐采纳,获得10
5秒前
脑洞疼应助紧张的毛衣采纳,获得10
5秒前
欧皇完成签到,获得积分10
5秒前
SciGPT应助优美猕猴桃采纳,获得10
6秒前
淡淡的小蘑菇完成签到,获得积分10
6秒前
天天快乐应助15134786587采纳,获得10
6秒前
sugkook完成签到,获得积分10
7秒前
小松徐完成签到,获得积分10
7秒前
wcx发布了新的文献求助10
8秒前
家里蹲高材生完成签到,获得积分10
8秒前
LLLLL发布了新的文献求助10
8秒前
在水一方应助Southluuu采纳,获得10
8秒前
lllsssqqq完成签到,获得积分10
8秒前
8秒前
菜菜鱼发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Silence发布了新的文献求助10
9秒前
酷波er应助晏清采纳,获得10
9秒前
科目三应助小吉麻麻采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603