Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 病理 内科学
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:37
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orange9发布了新的文献求助10
2秒前
nifty完成签到,获得积分10
2秒前
2秒前
充电宝应助就爱从黑巧采纳,获得30
3秒前
步步发布了新的文献求助20
3秒前
Young应助毛毛采纳,获得10
3秒前
科研通AI6应助毛毛采纳,获得10
3秒前
4秒前
4秒前
Young应助Dprisk采纳,获得10
4秒前
Folium完成签到,获得积分10
4秒前
小二郎应助gao采纳,获得10
5秒前
Grinde发布了新的文献求助10
5秒前
俏皮晓曼发布了新的文献求助10
5秒前
隐形曼青应助姿姿采纳,获得10
5秒前
July发布了新的文献求助10
5秒前
nini应助球球的铲屎官采纳,获得20
6秒前
6秒前
归尘发布了新的文献求助10
6秒前
6秒前
7秒前
pretzel完成签到,获得积分10
7秒前
大个应助微笑翠桃采纳,获得10
7秒前
阔达远山完成签到,获得积分10
8秒前
li关注了科研通微信公众号
9秒前
lulu发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
旺旺完成签到,获得积分10
10秒前
科研通AI6应助啦啦王采纳,获得10
10秒前
wangcc完成签到 ,获得积分10
10秒前
10秒前
cc发布了新的文献求助30
11秒前
Summeryz920完成签到,获得积分10
11秒前
12秒前
13秒前
Yjy发布了新的文献求助10
13秒前
慕青应助大胆妙竹采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736