Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 内科学 病理
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:24
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坤坤完成签到,获得积分10
刚刚
东风第一枝完成签到,获得积分20
刚刚
欢欢发布了新的文献求助10
刚刚
Jasper应助易安采纳,获得10
2秒前
2秒前
一一发布了新的文献求助10
2秒前
3秒前
Muller完成签到,获得积分10
3秒前
经法发布了新的文献求助10
4秒前
谦让的忘幽完成签到,获得积分20
4秒前
和谐小南完成签到,获得积分10
4秒前
小jiojio的猪完成签到,获得积分10
4秒前
小匹夫完成签到,获得积分10
5秒前
赤墨完成签到,获得积分10
5秒前
5秒前
6秒前
狮子沟核聚变骡子完成签到 ,获得积分10
6秒前
6秒前
传奇3应助乔治韦斯莱采纳,获得30
6秒前
6秒前
7秒前
于某人完成签到,获得积分10
7秒前
小陈要发SCI完成签到 ,获得积分10
7秒前
cdercder应助尹天扬采纳,获得20
7秒前
称心铭完成签到 ,获得积分10
8秒前
cjh258819完成签到,获得积分10
9秒前
9秒前
xl完成签到 ,获得积分10
10秒前
10秒前
10秒前
liu完成签到 ,获得积分10
10秒前
10秒前
wdlc完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
hhh发布了新的文献求助30
13秒前
Romina完成签到,获得积分10
13秒前
你不知道发布了新的文献求助30
14秒前
困_zzzzzz完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678