Chronic Disease Progression Prediction: Leveraging Case‐Based Reasoning and Big Data Analytics

计算机科学 个性化 大数据 疾病 共病 肾脏疾病 机器学习 人工智能 数据科学 数据挖掘 医学 万维网 内科学 病理
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (1): 259-280 被引量:24
标识
DOI:10.1111/poms.13532
摘要

Physicians caring for chronically ill individuals need to predict patients' disease progression, as accurate disease projections can facilitate better treatment decisions. The power of prediction is prevention, as it is easier to prevent than to reverse. In this research, we propose a data‐driven model for accurate and fast disease trajectory prediction, using electronic health records (EHRs) from Veterans Affairs Hospitals. EHRs contain tremendous amount of frequently updated, highly dimensional and not equally spaced data in diverse formats (e.g., numeric, textual, images, and videos). We propose an intelligent case‐based reasoning (iCBR) approach to better predict kidney disease progression, which can help prevent patients' health deterioration and prolong lives. Our iCBR contributes to the literature by enhancing the automation and personalization capabilities of the conventional case‐based reasoning (CBR). Through the iCBR, we advance the utilization of patient's laboratory data, vital sign, clinic visit, and comorbidity information. We examine (1) if the number of cases chosen for predicting the new patient's disease progression should be tailored, and (2) what the best number of prediction cases should be if customization is warranted. We link the number of cases selected for disease prediction with patient's disease characteristics. By comparing the results of the iCBR and popular machine learning and statistics models adapted to our problem, we find that the iCBR outperforms other methods. While the proposed model is applied to patients with chronic kidney disease, it can be readily applied to other chronic diseases such as diabetes, due to its similar data structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsiah发布了新的文献求助10
1秒前
1秒前
橙橙完成签到,获得积分10
1秒前
黎明发布了新的文献求助10
2秒前
小二郎应助xcr采纳,获得10
2秒前
田様应助伶俐的星月采纳,获得10
3秒前
4秒前
在水一方应助xuxu采纳,获得10
5秒前
齐琪完成签到,获得积分10
5秒前
善学以致用应助zeyulll采纳,获得10
6秒前
heyunfan完成签到,获得积分20
6秒前
lsiah完成签到,获得积分10
7秒前
加油完成签到,获得积分20
7秒前
squirrelcone完成签到 ,获得积分10
7秒前
嘻嘻子发布了新的文献求助10
8秒前
大宝完成签到,获得积分10
9秒前
Liu完成签到,获得积分10
10秒前
123发布了新的文献求助20
10秒前
万幸鹿发布了新的文献求助10
11秒前
12秒前
13秒前
风起完成签到 ,获得积分10
15秒前
edward关注了科研通微信公众号
15秒前
15秒前
15秒前
15秒前
闪闪完成签到,获得积分10
16秒前
longyu915完成签到 ,获得积分10
16秒前
李雨完成签到,获得积分10
18秒前
18秒前
落雁沙发布了新的文献求助10
19秒前
19秒前
looooooo完成签到,获得积分10
19秒前
慈祥的天曼完成签到,获得积分10
19秒前
20秒前
伍拾陆发布了新的文献求助10
20秒前
20秒前
华仔应助半烟采纳,获得10
21秒前
赘婿应助happynewyear采纳,获得10
21秒前
Michelle完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149723
求助须知:如何正确求助?哪些是违规求助? 2800743
关于积分的说明 7841670
捐赠科研通 2458302
什么是DOI,文献DOI怎么找? 1308386
科研通“疑难数据库(出版商)”最低求助积分说明 628498
版权声明 601706