Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images

高强度 分割 人工智能 模式识别(心理学) 计算机科学 深度学习 白质 排名(信息检索) 磁共振成像 医学 放射科
作者
Vaanathi Sundaresan,Giovanna Zamboni,Peter M. Rothwell,Mark Jenkinson,Ludovica Griffanti
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102184-102184 被引量:44
标识
DOI:10.1016/j.media.2021.102184
摘要

White matter hyperintensities (WMHs) have been associated with various cerebrovascular and neurodegenerative diseases. Reliable quantification of WMHs is essential for understanding their clinical impact in normal and pathological populations. Automated segmentation of WMHs is highly challenging due to heterogeneity in WMH characteristics between deep and periventricular white matter, presence of artefacts and differences in the pathology and demographics of populations. In this work, we propose an ensemble triplanar network that combines the predictions from three different planes of brain MR images to provide an accurate WMH segmentation. In the loss functions the network uses anatomical information regarding WMH spatial distribution in loss functions, to improve the efficiency of segmentation and to overcome the contrast variations between deep and periventricular WMHs. We evaluated our method on 5 datasets, of which 3 are part of a publicly available dataset (training data for MICCAI WMH Segmentation Challenge 2017 - MWSC 2017) consisting of subjects from three different cohorts, and we also submitted our method to MWSC 2017 to be evaluated on the unseen test datasets. On evaluating our method separately in deep and periventricular regions, we observed robust and comparable performance in both regions. Our method performed better than most of the existing methods, including FSL BIANCA, and on par with the top ranking deep learning methods of MWSC 2017.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助dizzyout采纳,获得10
刚刚
刚刚
刚刚
刚刚
茄茄女士完成签到 ,获得积分10
刚刚
无极微光应助史迪仔崽采纳,获得20
1秒前
1秒前
orixero应助芙芙官采纳,获得10
1秒前
BowieHuang应助alter_mu采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
shanshanlaichi完成签到,获得积分10
2秒前
爱科研的小常完成签到,获得积分10
3秒前
4秒前
JJ完成签到,获得积分20
4秒前
4秒前
4秒前
抹缇卡完成签到 ,获得积分10
4秒前
天空之城完成签到,获得积分10
4秒前
顾矜应助陈品琪采纳,获得10
5秒前
5秒前
apocalypse完成签到 ,获得积分10
5秒前
DDD完成签到 ,获得积分10
6秒前
Twonej应助chenjiaqi采纳,获得30
6秒前
lintao0836发布了新的文献求助20
7秒前
7秒前
7秒前
赤贽发布了新的文献求助10
7秒前
cecilia完成签到,获得积分20
8秒前
8秒前
8秒前
嘻嘻嘻完成签到,获得积分10
8秒前
9秒前
9秒前
乐空思应助Hsidiehd采纳,获得10
9秒前
hyr完成签到 ,获得积分10
9秒前
han发布了新的文献求助10
10秒前
大哥大姐帮帮忙完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708268
求助须知:如何正确求助?哪些是违规求助? 5187740
关于积分的说明 15253304
捐赠科研通 4861337
什么是DOI,文献DOI怎么找? 2609351
邀请新用户注册赠送积分活动 1559961
关于科研通互助平台的介绍 1517737