Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images

高强度 分割 人工智能 模式识别(心理学) 计算机科学 深度学习 白质 排名(信息检索) 磁共振成像 医学 放射科
作者
Vaanathi Sundaresan,Giovanna Zamboni,Peter M. Rothwell,Mark Jenkinson,Ludovica Griffanti
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:73: 102184-102184 被引量:44
标识
DOI:10.1016/j.media.2021.102184
摘要

White matter hyperintensities (WMHs) have been associated with various cerebrovascular and neurodegenerative diseases. Reliable quantification of WMHs is essential for understanding their clinical impact in normal and pathological populations. Automated segmentation of WMHs is highly challenging due to heterogeneity in WMH characteristics between deep and periventricular white matter, presence of artefacts and differences in the pathology and demographics of populations. In this work, we propose an ensemble triplanar network that combines the predictions from three different planes of brain MR images to provide an accurate WMH segmentation. In the loss functions the network uses anatomical information regarding WMH spatial distribution in loss functions, to improve the efficiency of segmentation and to overcome the contrast variations between deep and periventricular WMHs. We evaluated our method on 5 datasets, of which 3 are part of a publicly available dataset (training data for MICCAI WMH Segmentation Challenge 2017 - MWSC 2017) consisting of subjects from three different cohorts, and we also submitted our method to MWSC 2017 to be evaluated on the unseen test datasets. On evaluating our method separately in deep and periventricular regions, we observed robust and comparable performance in both regions. Our method performed better than most of the existing methods, including FSL BIANCA, and on par with the top ranking deep learning methods of MWSC 2017.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wym完成签到,获得积分10
1秒前
1秒前
宇文数学完成签到,获得积分10
1秒前
2秒前
Ray完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
PXP发布了新的文献求助10
4秒前
年轻小之完成签到 ,获得积分10
5秒前
5秒前
6秒前
marshyyy发布了新的文献求助10
6秒前
6秒前
稀里糊涂完成签到,获得积分10
6秒前
weerfi完成签到,获得积分10
7秒前
7秒前
sunzhuxi发布了新的文献求助10
7秒前
qwfwe发布了新的文献求助10
8秒前
blk发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
zhangyimg完成签到,获得积分10
10秒前
11秒前
坐等时光看轻自己完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
我是老大应助diguohu采纳,获得10
12秒前
感性的手链完成签到,获得积分20
12秒前
英俊的铭应助顺心的翠丝采纳,获得10
13秒前
小马完成签到,获得积分10
13秒前
慕青应助好好学习采纳,获得10
13秒前
pentjy完成签到,获得积分10
14秒前
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406