数学
积分器
Korteweg–de Vries方程
趋同(经济学)
方案(数学)
类型(生物学)
指数函数
订单(交换)
应用数学
数学分析
非线性系统
计算机科学
生物
带宽(计算)
经济
物理
财务
量子力学
经济增长
计算机网络
生态学
出处
期刊:Ima Journal of Numerical Analysis
日期:2021-07-16
卷期号:42 (4): 3499-3528
被引量:13
标识
DOI:10.1093/imanum/drab054
摘要
Abstract In this paper, we establish the optimal convergence for a second-order exponential-type integrator from Hofmanová & Schratz (2017, An exponential-type integrator for the KdV equation. Numer. Math., 136, 1117–1137) for solving the Korteweg–de Vries equation with rough initial data. The scheme is explicit and efficient to implement. By rigorous error analysis, we show that the scheme provides second-order accuracy in $H^\gamma $ for initial data in $H^{\gamma +4}$ for any $\gamma \geq 0$, where the regularity requirement is lower than for classical methods. The result is confirmed by numerical experiments, and comparisons are made with the Strang splitting scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI