Online detection of movement during natural and self-initiated reach-and-grasp actions from EEG signals.

人工智能 抓住 模式识别(心理学) 运动表象 人机交互 信号(编程语言) 计算机视觉 心理学
作者
Joana Pereira,Reinmar J. Kobler,Patrick Ofner,Andreas Schwarz,Gernot Müller-Putz
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046095-
标识
DOI:10.1088/1741-2552/ac0b52
摘要

Movement intention detection using electroencephalography (EEG) is a challenging but important component of brain-computer interfaces (BCIs) for people with motor disabilities. Objective​: The goal of this study is to exploit low-frequency time-domain EEG signals, concretely movement-related cortical potentials (MRCPs), to perform asynchronous online detection of movement. The experimental paradigm must be easily transferable to people without any residual upper-limb movement function. To achieve that goal, the BCI must be independent of upper-limb movement onset measurements and external cues. ​Approach​: In a study with non-disabled participants, we evaluated a novel BCI paradigm to detect self-initiated reach-and-grasp movements. Two experimental conditions were involved. In one condition, participants performed reach-and-grasp movements to a target and simultaneously shifted their gaze towards it. In a control condition, participants solely shifted their gaze towards the target (oculomotor task). The participants freely decided when to initiate the tasks. The saccade onset was used to label the EEG features, which were exploited on a hierarchical classification approach to detect movement asynchronously. ​Main results​: After correcting eye artifacts, movement information was mapped to sensorimotor, posterior parietal and occipital areas. With regards to BCI performance, 54.1% (14.4% SD) of the movements were correctly identified, and all participants achieved a performance above chance-level (around 12%). An average of 21.5% (14.1% SD) of the oculomotor tasks were falsely detected as upper-limb movement. In an additional rest condition, 1.7 (1.6 SD) false positives per minute were measured. ​Significance​: We present a new approach for movement detection which does not rely on upper-limb movement onset measurements or on the presentation of external cues. The task is intuitive and corresponds to the natural behavior of goal-directed movements, which also constitutes an advantage with respect to current BCI protocols.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
团团圆圆也完成签到 ,获得积分10
7秒前
读书人完成签到,获得积分10
7秒前
Ava应助东方即白采纳,获得10
8秒前
9秒前
不怕考试的赵无敌完成签到 ,获得积分10
11秒前
白马爱毛驴完成签到,获得积分10
13秒前
小二郎应助芝士雪豹采纳,获得10
15秒前
归零儿完成签到,获得积分10
16秒前
可靠的沅完成签到 ,获得积分10
18秒前
我是老大应助兴奋的宛亦采纳,获得10
18秒前
Xiangyang完成签到 ,获得积分10
24秒前
29秒前
左眼天堂完成签到,获得积分10
29秒前
fufu完成签到 ,获得积分10
29秒前
鑫渊发布了新的文献求助10
30秒前
33秒前
Kevin完成签到,获得积分10
34秒前
丰富内涵智慧蘑菇完成签到,获得积分10
37秒前
jiajiajai完成签到,获得积分10
38秒前
czj完成签到,获得积分10
40秒前
THEGAOSIR完成签到 ,获得积分10
41秒前
LeoYiS214完成签到,获得积分0
42秒前
tzj完成签到,获得积分10
43秒前
欣慰冬亦完成签到 ,获得积分10
44秒前
吃猫的鱼完成签到 ,获得积分10
45秒前
choyee发布了新的文献求助200
45秒前
1122完成签到,获得积分20
47秒前
cocolu应助楠木采纳,获得20
48秒前
Owen应助1122采纳,获得10
52秒前
jlwang完成签到,获得积分10
55秒前
YuenYuen完成签到,获得积分10
56秒前
调研昵称发布了新的文献求助10
59秒前
59秒前
xinxinqi完成签到 ,获得积分10
59秒前
CipherSage应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得20
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Caveolins and Caveolae 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461184
求助须知:如何正确求助?哪些是违规求助? 3054912
关于积分的说明 9045435
捐赠科研通 2744812
什么是DOI,文献DOI怎么找? 1505685
科研通“疑难数据库(出版商)”最低求助积分说明 695786
邀请新用户注册赠送积分活动 695205