金属有机骨架
材料科学
金属
离子
纳米技术
化学工程
化学
冶金
吸附
有机化学
工程类
作者
Jun Lü,Huacheng Zhang,Jue Hou,Xingya Li,Xiaoyi Hu,Yaoxin Hu,Christopher D. Easton,Qinye Li,Chenghua Sun,Aaron W. Thornton,Matthew R. Hill,Xiwang Zhang,Gengping Jiang,Jefferson Zhe Liu,Anita J. Hill,Benny D. Freeman,Lei Jiang,Huanting Wang
出处
期刊:Nature Materials
[Springer Nature]
日期:2020-03-09
卷期号:19 (7): 767-774
被引量:349
标识
DOI:10.1038/s41563-020-0634-7
摘要
Biological ion channels have remarkable ion selectivity, permeability and rectification properties, but it is challenging to develop artificial analogues. Here, we report a metal–organic framework-based subnanochannel (MOFSNC) with heterogeneous structure and surface chemistry to achieve these properties. The asymmetrically structured MOFSNC can rapidly conduct K+, Na+ and Li+ in the subnanometre-to-nanometre channel direction, with conductivities up to three orders of magnitude higher than those of Ca2+ and Mg2+, equivalent to a mono/divalent ion selectivity of 103. Moreover, by varying the pH from 3 to 8 the ion selectivity can be tuned further by a factor of 102 to 104. Theoretical simulations indicate that ion–carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity. These findings suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation. Here, using an interfacial growth strategy, UiO-66 MOF nanocrystals are asymmetrically embedded into conical pores in a polymer membrane. These pores have a mono/divalent cation selectivity of 103, which can be tuned by pH, and act as ionic rectifiers.
科研通智能强力驱动
Strongly Powered by AbleSci AI