生物
染色质
表观遗传学
原肠化
细胞生物学
胚胎干细胞
计算生物学
遗传学
DNA甲基化
基因
基因表达
作者
Yunlong Xiang,Yu Zhang,Qianhua Xu,Chen Zhou,Bofeng Liu,Zhenhai Du,Ke Zhang,Bingjie Zhang,Xiaoxiao Wang,Srimonta Gayen,Ling Liu,Yao Wang,Yuanyuan Li,Q. Wang,Sundeep Kalantry,Lei Li,Wei Xie
出处
期刊:Nature Genetics
[Springer Nature]
日期:2019-12-16
卷期号:52 (1): 95-105
被引量:77
标识
DOI:10.1038/s41588-019-0545-1
摘要
Around implantation, the epiblast (Epi) transits from naïve to primed pluripotency, before giving rise to the three germ layers. How chromatin is reconfigured during this developmental window remains poorly understood. We performed a genome-wide investigation of chromatin landscapes during this period. We find that enhancers in ectoderm are already pre-accessible in embryonic day 6.5 (E6.5) Epi when cells enter a primed pluripotent state. Unexpectedly, strong trimethylation of histone H3 at lysine 4 (H3K4me3) emerges at developmental gene promoters in E6.5 Epi and positively correlates with H3K27me3, thus establishing bivalency. These genes also show enhanced spatial interactions. Both the strong bivalency and spatial clustering are virtually absent in preimplantation embryos and are markedly reduced in fate-committed lineages. Finally, we show that KMT2B is essential for establishing bivalent H3K4me3 at E6.5 but becomes partially dispensable later. Its deficiency leads to impaired activation of developmental genes and subsequent embryonic lethality. Thus, our data characterize lineage-specific chromatin reconfiguration and a unique chromatin state for primed pluripotency.
科研通智能强力驱动
Strongly Powered by AbleSci AI