Anomaly pattern detection for streaming data

异常检测 离群值 计算机科学 模式识别(心理学) 数据流 异常(物理) 聚类分析 二进制数 数据挖掘 人工智能 数据点 数学 凝聚态物理 电信 算术 物理
作者
Taegong Kim,Cheong Hee Park
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:149: 113252-113252 被引量:23
标识
DOI:10.1016/j.eswa.2020.113252
摘要

Outlier detection aims to find a data sample that is different from most other data samples. While outlier detection is performed at an individual instance level, anomaly pattern detection on a data stream means detecting a time point where a pattern to generate data is unusual and significantly different from normal behavior. Beyond predicting the outlierness of individual data samples in a data stream, it can be very useful to detect the occurrence of anomalous patterns in real time. In this paper, we propose a method for anomaly pattern detection in a data stream based on binary classification for outliers and statistical tests on a data stream of binary labels of normal or an outlier. In the first step, by applying the clustering-based outlier detection method, we transform a data stream into a stream of binary values where 0 stands for the prediction as normal data and 1 for outlier prediction. In the second step, anomaly pattern detection is performed on a stream of binary values by two approaches: testing the equality of parameters in the binomial distributions of a reference window and a detection window, and using control charts for the fraction defective. The proposed method obtained the average true positive detection rate of 94% in simulated experiments using real and artificial data. The experimental results also show that anomaly pattern occurrence can be detected reliably even when outlier detection performance is relatively low.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助科研通管家采纳,获得10
刚刚
1221211应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得30
刚刚
zdd完成签到 ,获得积分20
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
喜悦中道应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
1221211应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
巴巴塔应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
典雅的谷槐完成签到,获得积分10
1秒前
prosperp应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
贪玩的笑阳完成签到,获得积分10
2秒前
3秒前
江城发布了新的文献求助10
3秒前
kevin发布了新的文献求助20
3秒前
菜菜完成签到,获得积分10
3秒前
chillin完成签到 ,获得积分10
4秒前
大壮完成签到,获得积分10
4秒前
4秒前
七七发布了新的文献求助10
4秒前
tu完成签到,获得积分20
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762