Label Co-Occurrence Learning With Graph Convolutional Networks for Multi-Label Chest X-Ray Image Classification

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 多标签分类 上下文图像分类 图形 图像(数学) 理论计算机科学
作者
Bingzhi Chen,Jinxing Li,Guangming Lu,Hongbing Yu,David Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 2292-2302 被引量:118
标识
DOI:10.1109/jbhi.2020.2967084
摘要

Existing multi-label medical image learning tasks generally contain rich relationship information among pathologies such as label co-occurrence and interdependency, which is of great importance for assisting in clinical diagnosis and can be represented as the graph-structured data. However, most state-of-the-art works only focus on regression from the input to the binary labels, failing to make full use of such valuable graph-structured information due to the complexity of graph data. In this paper, we propose a novel label co-occurrence learning framework based on Graph Convolution Networks (GCNs) to explicitly explore the dependencies between pathologies for the multi-label chest X-ray (CXR) image classification task, which we term the "CheXGCN". Specifically, the proposed CheXGCN consists of two modules, i.e., the image feature embedding (IFE) module and label co-occurrence learning (LCL) module. Thanks to the LCL model, the relationship between pathologies is generalized into a set of classifier scores by introducing the word embedding of pathologies and multi-layer graph information propagation. During end-to-end training, it can be flexibly integrated into the IFE module and then adaptively recalibrate multi-label outputs with these scores. Extensive experiments on the ChestX-Ray14 and CheXpert datasets have demonstrated the effectiveness of CheXGCN as compared with the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
常常完成签到 ,获得积分10
刚刚
lx发布了新的文献求助10
刚刚
刚刚
SSY完成签到,获得积分10
2秒前
祗想静静嘚完成签到 ,获得积分10
2秒前
zzw完成签到,获得积分10
2秒前
苏黎世发布了新的文献求助10
2秒前
李大柱完成签到,获得积分10
2秒前
David完成签到,获得积分10
3秒前
周欣玙发布了新的文献求助10
3秒前
net80yhm发布了新的文献求助10
4秒前
NCU-Xzzzz完成签到,获得积分10
4秒前
拼搏一曲完成签到 ,获得积分10
5秒前
荒野风发布了新的文献求助10
5秒前
轻松的鸿煊完成签到 ,获得积分10
6秒前
NCU-Xzzzz发布了新的文献求助10
6秒前
8秒前
JJG完成签到,获得积分20
9秒前
Hello应助Tiam采纳,获得10
10秒前
10秒前
ty完成签到,获得积分10
12秒前
zehua309完成签到,获得积分10
13秒前
火星上含芙完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
掌门发布了新的文献求助10
16秒前
愉快的花卷完成签到,获得积分10
16秒前
少言完成签到,获得积分10
18秒前
kiko完成签到,获得积分10
19秒前
隐形惜筠完成签到 ,获得积分10
21秒前
黑眼圈完成签到,获得积分10
25秒前
123发布了新的文献求助10
27秒前
28秒前
29秒前
又又妈妈完成签到,获得积分10
29秒前
欢呼的丁真完成签到,获得积分10
30秒前
ty发布了新的文献求助10
30秒前
Faded完成签到 ,获得积分10
31秒前
ding应助Amorfati采纳,获得10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048