已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Label Co-Occurrence Learning With Graph Convolutional Networks for Multi-Label Chest X-Ray Image Classification

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 多标签分类 上下文图像分类 图形 图像(数学) 理论计算机科学
作者
Bingzhi Chen,Jinxing Li,Guangming Lu,Hongbing Yu,David Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 2292-2302 被引量:118
标识
DOI:10.1109/jbhi.2020.2967084
摘要

Existing multi-label medical image learning tasks generally contain rich relationship information among pathologies such as label co-occurrence and interdependency, which is of great importance for assisting in clinical diagnosis and can be represented as the graph-structured data. However, most state-of-the-art works only focus on regression from the input to the binary labels, failing to make full use of such valuable graph-structured information due to the complexity of graph data. In this paper, we propose a novel label co-occurrence learning framework based on Graph Convolution Networks (GCNs) to explicitly explore the dependencies between pathologies for the multi-label chest X-ray (CXR) image classification task, which we term the "CheXGCN". Specifically, the proposed CheXGCN consists of two modules, i.e., the image feature embedding (IFE) module and label co-occurrence learning (LCL) module. Thanks to the LCL model, the relationship between pathologies is generalized into a set of classifier scores by introducing the word embedding of pathologies and multi-layer graph information propagation. During end-to-end training, it can be flexibly integrated into the IFE module and then adaptively recalibrate multi-label outputs with these scores. Extensive experiments on the ChestX-Ray14 and CheXpert datasets have demonstrated the effectiveness of CheXGCN as compared with the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助chenjun7080采纳,获得10
1秒前
彩色语蕊发布了新的文献求助30
1秒前
卷卷完成签到,获得积分10
2秒前
岳先生完成签到,获得积分10
2秒前
虚心立轩完成签到 ,获得积分10
4秒前
科研通AI2S应助qqqqqqwwww采纳,获得10
7秒前
7秒前
7秒前
岳先生发布了新的文献求助20
8秒前
Akim应助落叶采纳,获得10
9秒前
故意的问安完成签到 ,获得积分10
11秒前
冰红茶完成签到 ,获得积分10
11秒前
Aloha发布了新的文献求助10
11秒前
DarwinZC发布了新的文献求助10
12秒前
情怀应助李昊搏采纳,获得10
13秒前
经纲完成签到 ,获得积分0
13秒前
14秒前
ltw发布了新的文献求助10
14秒前
大个应助烧炭匠采纳,获得10
24秒前
年轻的醉冬完成签到 ,获得积分10
25秒前
CodeCraft应助chenjun7080采纳,获得10
28秒前
科目三应助坚强的初夏采纳,获得10
31秒前
35秒前
思源应助futianyu采纳,获得10
35秒前
彩色语蕊完成签到,获得积分10
39秒前
碧蓝巧荷完成签到 ,获得积分10
39秒前
jjjjjjj发布了新的文献求助10
40秒前
研友_VZG7GZ应助chenjun7080采纳,获得10
42秒前
43秒前
西红柿不吃皮完成签到 ,获得积分10
44秒前
wanqingw完成签到,获得积分10
45秒前
47秒前
Droplet完成签到,获得积分10
51秒前
隋嫣然完成签到,获得积分10
52秒前
Owen应助chenjun7080采纳,获得10
54秒前
54秒前
wanci应助鳗鱼绿蝶采纳,获得10
55秒前
大模型应助月亮端着大碗采纳,获得10
57秒前
57秒前
oxs完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466704
求助须知:如何正确求助?哪些是违规求助? 3059497
关于积分的说明 9066726
捐赠科研通 2749996
什么是DOI,文献DOI怎么找? 1508823
科研通“疑难数据库(出版商)”最低求助积分说明 697098
邀请新用户注册赠送积分活动 696896