卷积神经网络
分级(工程)
计算机科学
人工智能
结直肠癌
背景(考古学)
模式识别(心理学)
医学
癌症
内科学
生物
生态学
古生物学
作者
Muhammad Shaban,Ruqayya Awan,Muhammad Moazam Fraz,Ayesha Azam,Yee‐Wah Tsang,David Snead,Nasir Rajpoot
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2020-07-01
卷期号:39 (7): 2395-2405
被引量:136
标识
DOI:10.1109/tmi.2020.2971006
摘要
Digital histology images are amenable to the application of convolutional neural networks (CNNs) for analysis due to the sheer size of pixel data present in them. CNNs are generally used for representation learning from small image patches (e.g. 224×224 ) extracted from digital histology images due to computational and memory constraints. However, this approach does not incorporate high-resolution contextual information in histology images. We propose a novel way to incorporate a larger context by a context-aware neural network based on images with a dimension of 1792×1792 pixels. The proposed framework first encodes the local representation of a histology image into high dimensional features then aggregates the features by considering their spatial organization to make a final prediction. We evaluated the proposed method on two colorectal cancer datasets for the task of cancer grading. Our method outperformed the traditional patch-based approaches, problem-specific methods, and existing context-based methods. We also presented a comprehensive analysis of different variants of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI