亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Twitter Analysis of the Nonmedical Use and Side Effects of Methylphenidate: Machine Learning Study

哌醋甲酯 支持向量机 机器学习 召回 兴奋剂 注意缺陷多动障碍 人工智能 医学 情绪分析 计算机科学 心理学 精神科 认知心理学
作者
Do Young Kim,Jun-Gu Kim,Sung Wan Kim,Jae-Gwon Jeong
出处
期刊:Journal of Medical Internet Research 卷期号:22 (2): e16466-e16466 被引量:14
标识
DOI:10.2196/16466
摘要

Background Methylphenidate, a stimulant used to treat attention deficit hyperactivity disorder, has the potential to be used nonmedically, such as for studying and recreation. In an era when many people actively use social networking services, experience with the nonmedical use or side effects of methylphenidate might be shared on Twitter. Objective The purpose of this study was to analyze tweets about the nonmedical use and side effects of methylphenidate using a machine learning approach. Methods A total of 34,293 tweets mentioning methylphenidate from August 2018 to July 2019 were collected using searches for “methylphenidate” and its brand names. Tweets in a randomly selected training dataset (6860/34,293, 20.00%) were annotated as positive or negative for two dependent variables: nonmedical use and side effects. Features such as personal noun, nonmedical use terms, medical use terms, side effect terms, sentiment scores, and the presence of a URL were generated for supervised learning. Using the labeled training dataset and features, support vector machine (SVM) classifiers were built and the performance was evaluated using F1 scores. The classifiers were applied to the test dataset to determine the number of tweets about nonmedical use and side effects. Results Of the 6860 tweets in the training dataset, 5.19% (356/6860) and 5.52% (379/6860) were about nonmedical use and side effects, respectively. Performance of SVM classifiers for nonmedical use and side effects, expressed as F1 scores, were 0.547 (precision: 0.926, recall: 0.388, and accuracy: 0.967) and 0.733 (precision: 0.920, recall: 0.609, and accuracy: 0.976), respectively. In the test dataset, the SVM classifiers identified 361 tweets (1.32%) about nonmedical use and 519 tweets (1.89%) about side effects. The proportion of tweets about nonmedical use was highest in May 2019 (46/2624, 1.75%) and December 2018 (36/2041, 1.76%). Conclusions The SVM classifiers that were built in this study were highly precise and accurate and will help to automatically identify the nonmedical use and side effects of methylphenidate using Twitter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助BEGIN采纳,获得10
2秒前
脑洞疼应助火焰向上采纳,获得10
21秒前
Georgechan完成签到,获得积分10
22秒前
27秒前
蟹治猿完成签到 ,获得积分10
28秒前
火焰向上发布了新的文献求助10
32秒前
文渊完成签到,获得积分0
53秒前
Ava应助火焰向上采纳,获得10
1分钟前
1分钟前
火焰向上发布了新的文献求助10
1分钟前
2分钟前
BEGIN发布了新的文献求助10
2分钟前
深情安青应助BEGIN采纳,获得10
2分钟前
张起灵完成签到 ,获得积分10
3分钟前
Lucas应助obsidian_virgo采纳,获得10
3分钟前
obsidian_virgo完成签到,获得积分20
3分钟前
4分钟前
BEGIN发布了新的文献求助10
4分钟前
大模型应助野椒搞科研采纳,获得10
4分钟前
CipherSage应助BEGIN采纳,获得10
5分钟前
培培完成签到 ,获得积分10
5分钟前
Phaladius完成签到 ,获得积分10
5分钟前
5分钟前
Phaladius发布了新的文献求助10
6分钟前
6分钟前
BEGIN发布了新的文献求助10
6分钟前
隐形曼青应助BEGIN采纳,获得10
7分钟前
8分钟前
BEGIN发布了新的文献求助10
8分钟前
Cathy完成签到,获得积分10
8分钟前
hwen1998完成签到 ,获得积分10
8分钟前
Hello应助BEGIN采纳,获得10
8分钟前
9分钟前
YIN发布了新的文献求助10
9分钟前
さくま完成签到,获得积分10
9分钟前
liu应助YIN采纳,获得10
9分钟前
10分钟前
BEGIN发布了新的文献求助10
10分钟前
行走完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294545
求助须知:如何正确求助?哪些是违规求助? 2930483
关于积分的说明 8446093
捐赠科研通 2602677
什么是DOI,文献DOI怎么找? 1420700
科研通“疑难数据库(出版商)”最低求助积分说明 660658
邀请新用户注册赠送积分活动 643433