分割
人工智能
冠状动脉
深度学习
计算机科学
预处理器
冠状动脉造影
血管造影
医学
放射科
狭窄
模式识别(心理学)
动脉
心脏病学
心肌梗塞
作者
Su Yang,Jihoon Kweon,Jae‐Hyung Roh,Jae‐Hwan Lee,Hee Jun Kang,Lae-Jeong Park,Dong Joon Kim,Hyeonkyeong Yang,Jaehee Hur,Do‐Yoon Kang,Pil Hyung Lee,Jung‐Min Ahn,Soo‐Jin Kang,Duk‐Woo Park,Seung‐Whan Lee,Young‐Hak Kim,Cheol Whan Lee,Seong‐Wook Park,Seung‐Jung Park
标识
DOI:10.1038/s41598-019-53254-7
摘要
X-ray coronary angiography is a primary imaging technique for diagnosing coronary diseases. Although quantitative coronary angiography (QCA) provides morphological information of coronary arteries with objective quantitative measures, considerable training is required to identify the target vessels and understand the tree structure of coronary arteries. Despite the use of computer-aided tools, such as the edge-detection method, manual correction is necessary for accurate segmentation of coronary vessels. In the present study, we proposed a robust method for major vessel segmentation using deep learning models with fully convolutional networks. When angiographic images of 3302 diseased major vessels from 2042 patients were tested, deep learning networks accurately identified and segmented the major vessels in X-ray coronary angiography. The average F1 score reached 0.917, and 93.7% of the images exhibited a high F1 score > 0.8. The most narrowed region at the stenosis was distinctly captured with high connectivity. Robust predictability was validated for the external dataset with different image characteristics. For major vessel segmentation, our approach demonstrated that prediction could be completed in real time with minimal image preprocessing. By applying deep learning segmentation, QCA analysis could be further automated, thereby facilitating the use of QCA-based diagnostic methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI