Optimal policy for structure maintenance: A deep reinforcement learning framework

强化学习 马尔可夫决策过程 计算机科学 任务(项目管理) 增强学习 桥(图论) 人工神经网络 人工智能 过程(计算) 运筹学 机器学习 工程类 马尔可夫过程 系统工程 数学 医学 统计 操作系统 内科学
作者
Shiyin Wei,Yuequan Bao,Hui Li
出处
期刊:Structural Safety [Elsevier BV]
卷期号:83: 101906-101906 被引量:78
标识
DOI:10.1016/j.strusafe.2019.101906
摘要

The cost-effective management of aged infrastructure is an issue of worldwide concern. Markov decision process (MDP) models have been used in developing structural maintenance policies. Recent advances in the artificial intelligence (AI) community have shown that deep reinforcement learning (DRL) has the potential to solve large MDP optimization tasks. This paper proposes a novel automated DRL framework to obtain an optimized structural maintenance policy. The DRL framework contains a decision maker (AI agent) and the structure that needs to be maintained (AI task environment). The agent outputs maintenance policies and chooses maintenance actions, and the task environment determines the state transition of the structure and returns rewards to the agent under given maintenance actions. The advantages of the DRL framework include: (1) a deep neural network (DNN) is employed to learn the state-action Q value (defined as the predicted discounted expectation of the return for consequences under a given state-action pair), either based on simulations or historical data, and the policy is then obtained from the Q value; (2) optimization of the learning process is sample-based so that it can learn directly from real historical data collected from multiple bridges (i.e., big data from a large number of bridges); and (3) a general framework is used for different structure maintenance tasks with minimal changes to the neural network architecture. Case studies for a simple bridge deck with seven components and a long-span cable-stayed bridge with 263 components are performed to demonstrate the proposed procedure. The results show that the DRL is efficient at finding the optimal policy for maintenance tasks for both simple and complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
端庄芾发布了新的文献求助10
2秒前
3秒前
科研人完成签到,获得积分10
5秒前
hulahula发布了新的文献求助10
7秒前
伶俐乌完成签到,获得积分10
8秒前
刘忙发布了新的文献求助30
8秒前
乔乔完成签到,获得积分10
9秒前
没有昵称完成签到,获得积分10
9秒前
10秒前
kwai完成签到,获得积分10
11秒前
13秒前
刘永红发布了新的文献求助30
13秒前
lilili应助YY采纳,获得10
13秒前
丁浩伦完成签到,获得积分10
13秒前
研友_nEjYyZ发布了新的文献求助10
14秒前
123345发布了新的文献求助10
15秒前
wwww威完成签到,获得积分10
16秒前
平常丝完成签到,获得积分10
17秒前
17秒前
18秒前
Jasper应助Steplan采纳,获得10
20秒前
wangzhao完成签到,获得积分10
20秒前
21秒前
律政俏佳人完成签到 ,获得积分10
21秒前
21秒前
23秒前
23秒前
24秒前
24秒前
zz关闭了zz文献求助
28秒前
29秒前
刘永红发布了新的文献求助10
29秒前
tufei完成签到,获得积分10
30秒前
科研通AI2S应助能干的明轩采纳,获得10
30秒前
PhD-SCAU完成签到,获得积分10
31秒前
皮皮虾完成签到 ,获得积分10
34秒前
38秒前
39秒前
镓氧锌钇铀应助hyt采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658