A Digital Twin of Bridges for Structural Health Monitoring

桥(图论) 资产(计算机安全) 数据科学 计算机科学 资产管理 结构健康监测 大数据 虚拟表示法 工程类 系统工程 风险分析(工程) 计算机安全 数据挖掘 业务 医学 结构工程 财务 法学 政治学 内科学
作者
Ye Cong,Liam Butler,BARTEK CALKA,MARAT IANGURAZOV,Qiuchen Lu,Alastair Gregory,Mark Girolami,Campbell Middleton
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:115
标识
DOI:10.12783/shm2019/32287
摘要

Bridges are critical infrastructure systems connecting different regions and providing widespread social and economic benefits. It is therefore essential that they are designed, constructed and maintained properly to adapt to changing conditions of use and climate-driven events. With the rapid development in capability of collecting bridge monitoring data, a data challenge emerges due to insufficient capability in managing, processing and interpreting large monitoring datasets to extract useful information which is of practical value to the industry. One emerging area of research which focuses on addressing this challenge is the creation of ‘digital twins’ for bridges. A digital twin serves as a virtual representation of the physical infrastructure (i.e. the physical twin), which can be updated in near real time as new data is collected, provide feedback into the physical twin and perform ‘what-if’ scenarios for assessing asset risks and predicting asset performance. This paper presents and broadly discusses two years of exploratory study towards creating a digital twin of bridges for structural health monitoring purposes. In particular, it has involved an interdisciplinary collaboration between civil engineers at the Cambridge Centre for Smart Infrastructure and Construction (CSIC) and statisticians at the Alan Turing Institute (ATI), using two monitored railway bridges in Staffordshire, UK as a case study. Four areas of research were investigated: (i) real-time data management using BIM, (ii) physics-based approaches, (iii) data-driven approaches, and (iv) data-centric engineering approaches (i.e. synthesis of physics-based and datadriven approaches). A framework for creating a digital twin of bridges, particularly for structural health monitoring purposes, is proposed and briefly discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
设计狂魔完成签到,获得积分10
刚刚
无花果应助WSDSG采纳,获得10
3秒前
酷波er应助沉静的八宝粥采纳,获得10
3秒前
4秒前
6秒前
00000完成签到,获得积分10
7秒前
自然妙竹完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
斯文败类应助sudaxia100采纳,获得10
13秒前
AhhHuang完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
Ava应助悦耳傲儿采纳,获得10
14秒前
ChenXY完成签到,获得积分10
17秒前
严笑容发布了新的文献求助30
18秒前
严笑容发布了新的文献求助10
18秒前
严笑容发布了新的文献求助30
18秒前
严笑容发布了新的文献求助30
18秒前
严笑容发布了新的文献求助30
18秒前
严笑容发布了新的文献求助30
18秒前
严笑容发布了新的文献求助30
18秒前
严笑容发布了新的文献求助30
18秒前
严笑容发布了新的文献求助30
18秒前
孙波完成签到,获得积分10
19秒前
二猫发布了新的文献求助10
19秒前
20秒前
好运连连完成签到 ,获得积分10
22秒前
22秒前
22秒前
JuJu完成签到,获得积分10
23秒前
深情安青应助孙波采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792