Indicator-Based Constrained Multiobjective Evolutionary Algorithms

进化算法 数学优化 约束(计算机辅助设计) 计算机科学 多目标优化 分解 数学 生态学 几何学 生物
作者
Zhizhong Liu,Yong Wang,Bing-Chuan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (9): 5414-5426 被引量:91
标识
DOI:10.1109/tsmc.2019.2954491
摘要

Solving constrained multiobjective optimization problems (CMOPs) is a challenging task since it is necessary to optimize several conflicting objective functions and handle various constraints simultaneously. A promising way to solve CMOPs is to integrate multiobjective evolutionary algorithms (MOEAs) with constraint-handling techniques, and the resultant algorithms are called constrained MOEAs (CMOEAs). At present, many attempts have been made to combine dominance-based and decomposition-based MOEAs with diverse constraint-handling techniques together. However, for another main branch of MOEAs, i.e., indicator-based MOEAs, almost no effort has been devoted to extending them for solving CMOPs. In this article, we make the first study on the possibility and rationality of combining indicator-based MOEAs with constraint-handling techniques together. Afterward, we develop an indicator-based CMOEA framework which can combine indicator-based MOEAs with constraint-handling techniques conveniently. Based on the proposed framework, nine indicator-based CMOEAs are developed. Systemic experiments have been conducted on 19 widely used constrained multiobjective optimization test functions to identify the characteristics of these nine indicator-based CMOEAs. The experimental results suggest that both indicator-based MOEAs and constraint-handing techniques play very important roles in the performance of indicator-based CMOEAs. Some practical suggestions are also given about how to select appropriate indicator-based CMOEAs. Besides, we select a superior approach from these nine indicator-based CMOEAs and compare its performance with five state-of-the-art CMOEAs. The comparison results suggest that the selected indicator-based CMOEA can obtain quite competitive performance. It is thus believed that this article would encourage researchers to pay more attention to indicator-based CMOEAs in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
脑洞疼应助坚定的怜菡采纳,获得10
刚刚
张立敏完成签到,获得积分10
1秒前
传奇3应助wg采纳,获得10
2秒前
圆听听完成签到 ,获得积分10
2秒前
3秒前
4秒前
4秒前
lxp发布了新的文献求助10
4秒前
4秒前
5秒前
不倦发布了新的文献求助10
6秒前
GGbound发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
WY发布了新的文献求助10
9秒前
栗昊发布了新的文献求助10
9秒前
pai完成签到,获得积分10
9秒前
天天快乐应助阿季采纳,获得10
9秒前
好运来完成签到,获得积分10
9秒前
qq发布了新的文献求助20
10秒前
11秒前
12秒前
13秒前
slk完成签到,获得积分10
14秒前
CipherSage应助276860采纳,获得10
14秒前
14秒前
科研通AI6应助oneday采纳,获得10
16秒前
微笑无敌瑶完成签到,获得积分10
16秒前
wg发布了新的文献求助10
16秒前
18秒前
科研通AI6应助lxp采纳,获得10
18秒前
香蕉觅云应助小鱼采纳,获得10
18秒前
yaoyao6688发布了新的文献求助10
18秒前
顾矜应助LL采纳,获得10
19秒前
我爱科研完成签到,获得积分10
21秒前
郝宇完成签到,获得积分10
22秒前
23秒前
丰富的土豆完成签到,获得积分20
23秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291