Indicator-Based Constrained Multiobjective Evolutionary Algorithms

进化算法 数学优化 约束(计算机辅助设计) 计算机科学 多目标优化 分解 数学 几何学 生态学 生物
作者
Zhizhong Liu,Yong Wang,Bing-Chuan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (9): 5414-5426 被引量:91
标识
DOI:10.1109/tsmc.2019.2954491
摘要

Solving constrained multiobjective optimization problems (CMOPs) is a challenging task since it is necessary to optimize several conflicting objective functions and handle various constraints simultaneously. A promising way to solve CMOPs is to integrate multiobjective evolutionary algorithms (MOEAs) with constraint-handling techniques, and the resultant algorithms are called constrained MOEAs (CMOEAs). At present, many attempts have been made to combine dominance-based and decomposition-based MOEAs with diverse constraint-handling techniques together. However, for another main branch of MOEAs, i.e., indicator-based MOEAs, almost no effort has been devoted to extending them for solving CMOPs. In this article, we make the first study on the possibility and rationality of combining indicator-based MOEAs with constraint-handling techniques together. Afterward, we develop an indicator-based CMOEA framework which can combine indicator-based MOEAs with constraint-handling techniques conveniently. Based on the proposed framework, nine indicator-based CMOEAs are developed. Systemic experiments have been conducted on 19 widely used constrained multiobjective optimization test functions to identify the characteristics of these nine indicator-based CMOEAs. The experimental results suggest that both indicator-based MOEAs and constraint-handing techniques play very important roles in the performance of indicator-based CMOEAs. Some practical suggestions are also given about how to select appropriate indicator-based CMOEAs. Besides, we select a superior approach from these nine indicator-based CMOEAs and compare its performance with five state-of-the-art CMOEAs. The comparison results suggest that the selected indicator-based CMOEA can obtain quite competitive performance. It is thus believed that this article would encourage researchers to pay more attention to indicator-based CMOEAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cuicui_061完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Sheldon完成签到,获得积分10
2秒前
远道发布了新的文献求助10
2秒前
研友_VZG7GZ应助hgsd采纳,获得10
3秒前
qoq发布了新的文献求助10
3秒前
Rukia完成签到,获得积分10
3秒前
3秒前
7秒前
嗝嗝完成签到,获得积分10
7秒前
8秒前
感动归尘发布了新的文献求助10
8秒前
cuicui_061发布了新的文献求助10
9秒前
9秒前
儒雅的夏翠完成签到,获得积分10
12秒前
12秒前
俭朴自中发布了新的文献求助10
12秒前
12秒前
MM完成签到,获得积分10
13秒前
小栗发布了新的文献求助10
13秒前
shirley完成签到,获得积分10
13秒前
远道完成签到,获得积分10
14秒前
啊哈嗯哈哈啊完成签到,获得积分10
14秒前
复杂的如冰完成签到,获得积分10
14秒前
15秒前
雪茶发布了新的文献求助30
15秒前
16秒前
16秒前
陈海伦完成签到 ,获得积分10
17秒前
17秒前
18秒前
小飞发布了新的文献求助10
19秒前
777完成签到,获得积分10
21秒前
22秒前
可乐发布了新的文献求助10
22秒前
22秒前
Marcus完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312499
求助须知:如何正确求助?哪些是违规求助? 2945157
关于积分的说明 8523210
捐赠科研通 2620967
什么是DOI,文献DOI怎么找? 1433156
科研通“疑难数据库(出版商)”最低求助积分说明 664898
邀请新用户注册赠送积分活动 650255