Indicator-Based Constrained Multiobjective Evolutionary Algorithms

进化算法 数学优化 约束(计算机辅助设计) 计算机科学 多目标优化 分解 数学 几何学 生态学 生物
作者
Zhizhong Liu,Yong Wang,Bing-Chuan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (9): 5414-5426 被引量:91
标识
DOI:10.1109/tsmc.2019.2954491
摘要

Solving constrained multiobjective optimization problems (CMOPs) is a challenging task since it is necessary to optimize several conflicting objective functions and handle various constraints simultaneously. A promising way to solve CMOPs is to integrate multiobjective evolutionary algorithms (MOEAs) with constraint-handling techniques, and the resultant algorithms are called constrained MOEAs (CMOEAs). At present, many attempts have been made to combine dominance-based and decomposition-based MOEAs with diverse constraint-handling techniques together. However, for another main branch of MOEAs, i.e., indicator-based MOEAs, almost no effort has been devoted to extending them for solving CMOPs. In this article, we make the first study on the possibility and rationality of combining indicator-based MOEAs with constraint-handling techniques together. Afterward, we develop an indicator-based CMOEA framework which can combine indicator-based MOEAs with constraint-handling techniques conveniently. Based on the proposed framework, nine indicator-based CMOEAs are developed. Systemic experiments have been conducted on 19 widely used constrained multiobjective optimization test functions to identify the characteristics of these nine indicator-based CMOEAs. The experimental results suggest that both indicator-based MOEAs and constraint-handing techniques play very important roles in the performance of indicator-based CMOEAs. Some practical suggestions are also given about how to select appropriate indicator-based CMOEAs. Besides, we select a superior approach from these nine indicator-based CMOEAs and compare its performance with five state-of-the-art CMOEAs. The comparison results suggest that the selected indicator-based CMOEA can obtain quite competitive performance. It is thus believed that this article would encourage researchers to pay more attention to indicator-based CMOEAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
罗尧完成签到,获得积分10
3秒前
Ava应助NGU采纳,获得10
3秒前
3秒前
3秒前
19991027完成签到 ,获得积分10
4秒前
4秒前
行路难发布了新的文献求助30
4秒前
科研通AI6应助谨慎建辉采纳,获得10
5秒前
XX发布了新的文献求助10
5秒前
6秒前
VESong发布了新的文献求助10
7秒前
fdu_sf发布了新的文献求助10
7秒前
7秒前
houlingwei发布了新的文献求助30
8秒前
pppyy完成签到,获得积分10
10秒前
KANY应助zero桥采纳,获得30
10秒前
科研通AI6应助zdesfsfa采纳,获得10
10秒前
小粥完成签到,获得积分20
10秒前
liu完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
丘比特应助车宇采纳,获得10
12秒前
小青椒应助KKK采纳,获得50
13秒前
鑫博完成签到 ,获得积分10
13秒前
Ava应助想要有直升机采纳,获得10
14秒前
14秒前
懒羊羊发布了新的文献求助10
15秒前
张飞完成签到 ,获得积分10
16秒前
温柔柜子发布了新的文献求助10
18秒前
kook发布了新的文献求助10
19秒前
彭彭发布了新的文献求助10
19秒前
香蕉觅云应助peiyi采纳,获得10
19秒前
Akim应助fdu_sf采纳,获得10
21秒前
汉堡包应助fdu_sf采纳,获得10
21秒前
深情安青应助fdu_sf采纳,获得10
21秒前
今后应助fdu_sf采纳,获得10
21秒前
小羊羊完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288622
求助须知:如何正确求助?哪些是违规求助? 4440454
关于积分的说明 13824620
捐赠科研通 4322732
什么是DOI,文献DOI怎么找? 2372708
邀请新用户注册赠送积分活动 1368140
关于科研通互助平台的介绍 1332034