Indicator-Based Constrained Multiobjective Evolutionary Algorithms

进化算法 数学优化 约束(计算机辅助设计) 计算机科学 多目标优化 分解 数学 几何学 生态学 生物
作者
Zhizhong Liu,Yong Wang,Bing-Chuan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (9): 5414-5426 被引量:91
标识
DOI:10.1109/tsmc.2019.2954491
摘要

Solving constrained multiobjective optimization problems (CMOPs) is a challenging task since it is necessary to optimize several conflicting objective functions and handle various constraints simultaneously. A promising way to solve CMOPs is to integrate multiobjective evolutionary algorithms (MOEAs) with constraint-handling techniques, and the resultant algorithms are called constrained MOEAs (CMOEAs). At present, many attempts have been made to combine dominance-based and decomposition-based MOEAs with diverse constraint-handling techniques together. However, for another main branch of MOEAs, i.e., indicator-based MOEAs, almost no effort has been devoted to extending them for solving CMOPs. In this article, we make the first study on the possibility and rationality of combining indicator-based MOEAs with constraint-handling techniques together. Afterward, we develop an indicator-based CMOEA framework which can combine indicator-based MOEAs with constraint-handling techniques conveniently. Based on the proposed framework, nine indicator-based CMOEAs are developed. Systemic experiments have been conducted on 19 widely used constrained multiobjective optimization test functions to identify the characteristics of these nine indicator-based CMOEAs. The experimental results suggest that both indicator-based MOEAs and constraint-handing techniques play very important roles in the performance of indicator-based CMOEAs. Some practical suggestions are also given about how to select appropriate indicator-based CMOEAs. Besides, we select a superior approach from these nine indicator-based CMOEAs and compare its performance with five state-of-the-art CMOEAs. The comparison results suggest that the selected indicator-based CMOEA can obtain quite competitive performance. It is thus believed that this article would encourage researchers to pay more attention to indicator-based CMOEAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐冬瓜完成签到,获得积分10
刚刚
李大白完成签到 ,获得积分10
刚刚
song_song完成签到,获得积分10
1秒前
星辰大海应助Ni采纳,获得10
1秒前
清清甜应助熊毅峰采纳,获得10
2秒前
高山我梦完成签到,获得积分10
3秒前
4秒前
dogsday完成签到,获得积分10
4秒前
poyo完成签到,获得积分10
4秒前
跳跃雨泽完成签到,获得积分10
4秒前
北海qy完成签到,获得积分10
4秒前
xx完成签到,获得积分10
4秒前
Joanna完成签到,获得积分10
5秒前
hhh完成签到,获得积分10
5秒前
刻苦樱完成签到 ,获得积分10
5秒前
婷婷完成签到,获得积分10
5秒前
5秒前
6秒前
LL发布了新的文献求助10
6秒前
茄子完成签到,获得积分10
6秒前
尧九完成签到,获得积分10
7秒前
Cuisine完成签到 ,获得积分10
7秒前
yan123完成签到,获得积分10
7秒前
负数完成签到,获得积分10
7秒前
热心克莉丝完成签到,获得积分10
8秒前
赘婿应助山雀采纳,获得10
8秒前
未末木发布了新的文献求助10
8秒前
天天快乐应助斯文莺采纳,获得10
8秒前
宋宋发布了新的文献求助10
9秒前
9秒前
缓慢的煎蛋完成签到,获得积分10
9秒前
10秒前
10秒前
yibaozhangfa完成签到,获得积分10
11秒前
11秒前
Sun发布了新的文献求助20
11秒前
郭凯丽完成签到,获得积分20
11秒前
斯文败类应助lipeng采纳,获得10
11秒前
小巧的问旋完成签到,获得积分10
12秒前
暴龙战士发布了新的文献求助10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044