亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Indicator-Based Constrained Multiobjective Evolutionary Algorithms

进化算法 数学优化 约束(计算机辅助设计) 计算机科学 多目标优化 分解 数学 几何学 生态学 生物
作者
Zhizhong Liu,Yong Wang,Bing-Chuan Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:51 (9): 5414-5426 被引量:91
标识
DOI:10.1109/tsmc.2019.2954491
摘要

Solving constrained multiobjective optimization problems (CMOPs) is a challenging task since it is necessary to optimize several conflicting objective functions and handle various constraints simultaneously. A promising way to solve CMOPs is to integrate multiobjective evolutionary algorithms (MOEAs) with constraint-handling techniques, and the resultant algorithms are called constrained MOEAs (CMOEAs). At present, many attempts have been made to combine dominance-based and decomposition-based MOEAs with diverse constraint-handling techniques together. However, for another main branch of MOEAs, i.e., indicator-based MOEAs, almost no effort has been devoted to extending them for solving CMOPs. In this article, we make the first study on the possibility and rationality of combining indicator-based MOEAs with constraint-handling techniques together. Afterward, we develop an indicator-based CMOEA framework which can combine indicator-based MOEAs with constraint-handling techniques conveniently. Based on the proposed framework, nine indicator-based CMOEAs are developed. Systemic experiments have been conducted on 19 widely used constrained multiobjective optimization test functions to identify the characteristics of these nine indicator-based CMOEAs. The experimental results suggest that both indicator-based MOEAs and constraint-handing techniques play very important roles in the performance of indicator-based CMOEAs. Some practical suggestions are also given about how to select appropriate indicator-based CMOEAs. Besides, we select a superior approach from these nine indicator-based CMOEAs and compare its performance with five state-of-the-art CMOEAs. The comparison results suggest that the selected indicator-based CMOEA can obtain quite competitive performance. It is thus believed that this article would encourage researchers to pay more attention to indicator-based CMOEAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sam1357发布了新的文献求助10
2秒前
10秒前
byho发布了新的文献求助10
15秒前
研友_VZG7GZ应助byho采纳,获得10
28秒前
49秒前
byho发布了新的文献求助10
54秒前
WerWu完成签到,获得积分10
57秒前
Jasper应助byho采纳,获得10
1分钟前
今后应助byho采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得200
1分钟前
Sam1357完成签到,获得积分20
1分钟前
orixero应助dransgods采纳,获得10
1分钟前
1分钟前
dransgods发布了新的文献求助10
1分钟前
2分钟前
阿莫西林完成签到,获得积分10
2分钟前
byho发布了新的文献求助10
2分钟前
2分钟前
byho发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
忧伤的绍辉完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
Otter完成签到,获得积分0
3分钟前
3分钟前
852应助头孢西丁采纳,获得30
3分钟前
KachiRyoji应助头孢西丁采纳,获得20
3分钟前
阿布发布了新的文献求助10
3分钟前
牛八先生完成签到,获得积分10
4分钟前
CipherSage应助七人七采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
七人七发布了新的文献求助10
5分钟前
阿布完成签到,获得积分10
5分钟前
热情的寄瑶完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
千里草完成签到,获得积分10
6分钟前
隐形曼青应助Swait采纳,获得10
6分钟前
七人七发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611742
求助须知:如何正确求助?哪些是违规求助? 4017185
关于积分的说明 12436076
捐赠科研通 3699108
什么是DOI,文献DOI怎么找? 2039948
邀请新用户注册赠送积分活动 1072735
科研通“疑难数据库(出版商)”最低求助积分说明 956483