Contrast-enhanced cone beam breast CT features of breast cancers: correlation with immunohistochemical receptors and molecular subtypes

医学 免疫组织化学 放射科 乳腺癌 病变 钙化 逻辑回归 病理 血管性 肿瘤科 内科学 癌症
作者
Yue Ma,Aidi Liu,Avice M. O’Connell,Yueqiang Zhu,Haijie Li,Peng Han,Yin Lu,Hong Lü,Zhaoxiang Ye
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (4): 2580-2589 被引量:18
标识
DOI:10.1007/s00330-020-07277-8
摘要

To investigate the association of contrast-enhanced cone beam breast CT (CE-CBBCT) features, immunohistochemical (IHC) receptors, and molecular subtypes in breast cancer. In this retrospective study, patients who underwent preoperative CE-CBBCT and received complete IHC results were analyzed. CE-CBBCT features were evaluated by two radiologists. Observer reproducibility and feature reliability were assessed. The association between CE-CBBCT features, IHC receptors, and molecular subtypes was analyzed using the chi-square, Mann-Whitney, and Kruskal-Wallis tests. Multivariate logistic regression was performed to assess the ability of combined imaging features to discriminate molecular subtypes. ROC curve was used to evaluate prediction performance. A total of 240 invasive cancers identified in 211 women were enrolled. Molecular subtypes of breast cancer were significantly associated with focality number of lesions, lesion type, tumor size, lesion density, internal enhancement pattern, degree of lesion enhancement (ΔHU), mass shape, spiculation, calcifications, calcification distribution, and increased peripheral vascularity of lesion (all p < 0.005), some of which also helped to differentiate IHC receptor status. A multivariate logistic regression model showed that tumor size (odds ratio, OR = 1.244), mass shape (OR = 0.311), spiculation (OR = 0.159), and internal enhancement pattern (OR = 0.227) were associated with differentiation between luminal and non-luminal subtypes (AUC = 0.809). Combined CE-CBBCT features, including lesion type (OR = 0.118), calcifications (OR = 0.181), and ΔHU (OR = 0.962), could be significant indicators of triple-negative versus HER-2-enriched subtypes (AUC = 0.913). CE-CBBCT features have the potential to help predict IHC receptor status and distinguish molecular subtypes of breast cancer, which could in turn help to develop individual treatment decisions and prognosis predictions. • A total of 11 CE-CBBCT features were associated with molecular subtypes, some of which also helped to differentiate IHC receptor status. • Tumor size, irregular mass shape, spiculation, and internal enhancement pattern could help identify luminal subtype. • Lesion type, calcification, and ΔHU could be significant indicators of HER-2- enriched versus triple-negative breast cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ingxiaiu发布了新的文献求助10
刚刚
penny发布了新的文献求助10
刚刚
共享精神应助kyhappy_2002采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI2S应助HHH采纳,获得10
6秒前
我睡觉不会困12138完成签到 ,获得积分10
7秒前
8秒前
SU发布了新的文献求助10
8秒前
8秒前
旺仔仔完成签到,获得积分10
8秒前
meng完成签到,获得积分10
9秒前
ding应助小王同学采纳,获得10
10秒前
10秒前
Sunday完成签到 ,获得积分10
12秒前
meng应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
赵文浩应助科研通管家采纳,获得20
13秒前
ding应助科研通管家采纳,获得10
13秒前
赵文浩应助科研通管家采纳,获得10
13秒前
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得150
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
long应助科研通管家采纳,获得10
14秒前
14秒前
16秒前
SciGPT应助罗嘉琦采纳,获得10
16秒前
yungu完成签到,获得积分10
16秒前
大个应助哈哈嘻嘻采纳,获得30
17秒前
现代冬寒发布了新的文献求助30
17秒前
18秒前
完美世界应助kyhappy_2002采纳,获得200
18秒前
satisusu完成签到 ,获得积分10
20秒前
蘧蘧发布了新的文献求助10
21秒前
kyxb发布了新的文献求助30
21秒前
peachhhh完成签到,获得积分10
21秒前
太阳能维修完成签到,获得积分10
22秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073428
求助须知:如何正确求助?哪些是违规求助? 4293518
关于积分的说明 13378782
捐赠科研通 4114951
什么是DOI,文献DOI怎么找? 2253260
邀请新用户注册赠送积分活动 1258050
关于科研通互助平台的介绍 1190911