PI3K/AKT/mTOR通路
蛋白激酶B
再灌注损伤
缺血
医学
氧化应激
脑缺血
药理学
麻醉
细胞凋亡
内分泌学
内科学
生物
生物化学
作者
Ensheng Zhang,Qian Chen,Jing Wang,Dong Liu,Zhenxia Wan,Xiuli Ju
标识
DOI:10.1016/j.intimp.2020.106635
摘要
MicroRNAs (miRNAs) have been reported in cerebral ischemia-reperfusion injury, yet the function of miR-27a in it has seldom been mentioned. This study aims to assess the mechanisms of miR-27a in rats with cerebral ischemia-reperfusion injury.The cerebral ischemia-reperfusion models of rat pups were established by bilateral carotid artery occlusion. Rats were treated with miR-27a agomir, silenced HSP90 expression plasmids or PI3K/AKT/mTOR pathway agonist. Oxidative stress indices, inflammatory factors, brain tissue water content, cerebral infarct volume, neurological function score and neuronal apoptosis in rats with cerebral ischemia-reperfusion injury were measured. MiR-27a and HSP90 expression and PI3K/AKT/mTOR phosphorylation levels in the brain tissues of rats were also detected.MiR-27a expression and PI3K/AKT/mTOR phosphorylation levels were downregulated while HSP90 expression was upregulated in cerebral ischemia-reperfusion injury rats. Elevated miR-27a or reduced HSP90 diminished water content, neuronal apoptosis and infarct volume, suppressed oxidative stress and inflammatory response, as well as improved neurological deficits and pathological damages. Moreover, elevated miR-27a or silenced HSP90 upregulated PI3K/AKT/mTOR phosphorylation levels in cerebral ischemia-reperfusion injury rats. HSP90 silencing or PI3K/AKT/mTOR pathway agonist reversed the unfavorable effects of low miR-27a expression on cerebral ischemia-reperfusion injury rats.To conclude, our study demonstrates that elevated miR-27a or decreased HSP90 attenuates oxidative stress and inflammatory response, and improves neurological function in cerebral ischemia-reperfusion injury rats by activating PI3K/AKT/mTOR signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI