High‐Resolution Breast MRI Reconstruction Using a Deep Convolutional Generative Adversarial Network

威尔科克森符号秩检验 生成对抗网络 人工智能 医学 图像质量 深度学习 计算机科学 乳房磁振造影 放射科 模式识别(心理学) 图像(数学) 乳腺摄影术 乳腺癌 曼惠特尼U检验 内科学 癌症
作者
Kun Sun,Liangqiong Qu,Chunfeng Lian,Yongsheng Pan,Dan Hu,Bingqing Xia,Xinyue Li,Weimin Chai,Fuhua Yan,Dinggang Shen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (6): 1852-1858 被引量:9
标识
DOI:10.1002/jmri.27256
摘要

Background A generative adversarial network could be used for high‐resolution (HR) medical image synthesis with reduced scan time. Purpose To evaluate the potential of using a deep convolutional generative adversarial network (DCGAN) for generating HR pre and HR post images based on their corresponding low‐resolution (LR) images (LR pre and LR post ). Study Type This was a retrospective analysis of a prospectively acquired cohort. Population In all, 224 subjects were randomly divided into 200 training subjects and an independent 24 subjects testing set. Field Strength/Sequence Dynamic contrast‐enhanced (DCE) MRI with a 1.5T scanner. Assessment Three breast radiologists independently ranked the image datasets, using the DCE images as the ground truth, and reviewed the image quality of both the original LR images and the generated HR images. The BI‐RADS category and conspicuity of lesions were also ranked. The inter/intracorrelation coefficients (ICCs) of mean image quality scores, lesion conspicuity scores, and Breast Imaging Reporting and Data System (BI‐RADS) categories were calculated between the three readers. Statistical Test Wilcoxon signed‐rank tests evaluated differences among the multireader ranking scores. Results The mean overall image quality scores of the generated HR pre and HR post were significantly higher than those of the original LR pre and LR post (4.77 ± 0.41 vs. 3.27 ± 0.43 and 4.72 ± 0.44 vs. 3.23 ± 0.43, P < 0.0001, respectively, in the multireader study). The mean lesion conspicuity scores of the generated HR pre and HR post were significantly higher than those of the original LR pre and LR post (4.18 ± 0.70 vs. 3.49 ± 0.58 and 4.35 ± 0.59 vs. 3.48 ± 0.61, P < 0.001, respectively, in the multireader study). The ICCs of the image quality scores, lesion conspicuity scores, and BI‐RADS categories had good agreements among the three readers (all ICCs >0.75). Data Conclusion DCGAN was capable of generating HR of the breast from fast pre‐ and postcontrast LR and achieved superior quantitative and qualitative performance in a multireader study. Level of Evidence 3 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2020;52:1852–1858.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111发布了新的文献求助10
2秒前
Doctor.Xie完成签到,获得积分10
2秒前
3秒前
5秒前
5秒前
heart发布了新的文献求助10
6秒前
温乘云发布了新的文献求助10
8秒前
8秒前
9秒前
六八发布了新的文献求助10
9秒前
一星如月完成签到,获得积分10
11秒前
茄丁捞面发布了新的文献求助10
12秒前
复杂的小翠完成签到,获得积分20
13秒前
老詹头应助唯一采纳,获得10
13秒前
14秒前
David完成签到,获得积分10
16秒前
samifranco完成签到,获得积分20
16秒前
16秒前
Cryo完成签到,获得积分10
17秒前
情怀应助MHY采纳,获得10
18秒前
所所应助赏水木采纳,获得10
18秒前
18秒前
19秒前
漂流发布了新的文献求助30
20秒前
李健的小迷弟应助Kirin采纳,获得10
20秒前
吧唧吧唧完成签到,获得积分20
20秒前
Metastasis完成签到,获得积分10
20秒前
21秒前
wanci应助复杂的小翠采纳,获得10
21秒前
糊糊发布了新的文献求助10
21秒前
科研小狗完成签到 ,获得积分10
22秒前
22秒前
23秒前
23秒前
六八完成签到,获得积分10
23秒前
科目三应助哈哈哈采纳,获得10
23秒前
南庭发布了新的文献求助10
23秒前
ding应助专一的书雪采纳,获得10
24秒前
房产中介发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706