High‐Resolution Breast MRI Reconstruction Using a Deep Convolutional Generative Adversarial Network

威尔科克森符号秩检验 生成对抗网络 人工智能 医学 图像质量 深度学习 计算机科学 乳房磁振造影 放射科 模式识别(心理学) 图像(数学) 乳腺摄影术 乳腺癌 曼惠特尼U检验 内科学 癌症
作者
Kun Sun,Liangqiong Qu,Chunfeng Lian,Yongsheng Pan,Dan Hu,Bingqing Xia,Xinyue Li,Weimin Chai,Fuhua Yan,Dinggang Shen
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:52 (6): 1852-1858 被引量:9
标识
DOI:10.1002/jmri.27256
摘要

Background A generative adversarial network could be used for high‐resolution (HR) medical image synthesis with reduced scan time. Purpose To evaluate the potential of using a deep convolutional generative adversarial network (DCGAN) for generating HR pre and HR post images based on their corresponding low‐resolution (LR) images (LR pre and LR post ). Study Type This was a retrospective analysis of a prospectively acquired cohort. Population In all, 224 subjects were randomly divided into 200 training subjects and an independent 24 subjects testing set. Field Strength/Sequence Dynamic contrast‐enhanced (DCE) MRI with a 1.5T scanner. Assessment Three breast radiologists independently ranked the image datasets, using the DCE images as the ground truth, and reviewed the image quality of both the original LR images and the generated HR images. The BI‐RADS category and conspicuity of lesions were also ranked. The inter/intracorrelation coefficients (ICCs) of mean image quality scores, lesion conspicuity scores, and Breast Imaging Reporting and Data System (BI‐RADS) categories were calculated between the three readers. Statistical Test Wilcoxon signed‐rank tests evaluated differences among the multireader ranking scores. Results The mean overall image quality scores of the generated HR pre and HR post were significantly higher than those of the original LR pre and LR post (4.77 ± 0.41 vs. 3.27 ± 0.43 and 4.72 ± 0.44 vs. 3.23 ± 0.43, P < 0.0001, respectively, in the multireader study). The mean lesion conspicuity scores of the generated HR pre and HR post were significantly higher than those of the original LR pre and LR post (4.18 ± 0.70 vs. 3.49 ± 0.58 and 4.35 ± 0.59 vs. 3.48 ± 0.61, P < 0.001, respectively, in the multireader study). The ICCs of the image quality scores, lesion conspicuity scores, and BI‐RADS categories had good agreements among the three readers (all ICCs >0.75). Data Conclusion DCGAN was capable of generating HR of the breast from fast pre‐ and postcontrast LR and achieved superior quantitative and qualitative performance in a multireader study. Level of Evidence 3 Technical Efficacy Stage 2 J. MAGN. RESON. IMAGING 2020;52:1852–1858.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝冰棒发布了新的文献求助10
刚刚
刚刚
请叫我风吹麦浪完成签到,获得积分0
刚刚
清爽雪枫发布了新的文献求助10
1秒前
1秒前
1秒前
李健应助斜杠武采纳,获得10
2秒前
fengxj完成签到 ,获得积分10
2秒前
2秒前
2秒前
七七给七七的求助进行了留言
2秒前
3秒前
3秒前
Hello应助冷静的平安采纳,获得10
3秒前
FKVB_完成签到 ,获得积分10
4秒前
饼饼完成签到,获得积分10
4秒前
天天快乐应助木木采纳,获得10
4秒前
艺玲发布了新的文献求助10
4秒前
大气飞丹发布了新的文献求助10
4秒前
丫丫完成签到,获得积分10
5秒前
科研通AI2S应助觅桃乌龙采纳,获得10
5秒前
耿强完成签到,获得积分10
5秒前
wanci应助dd采纳,获得10
6秒前
汉堡包应助cuihl123采纳,获得10
6秒前
李浓完成签到,获得积分10
6秒前
DreamMaker发布了新的文献求助10
6秒前
mao12wang完成签到,获得积分10
7秒前
7秒前
bdvdsrwteges发布了新的文献求助10
8秒前
如约而至发布了新的文献求助20
8秒前
纯真的莫茗完成签到,获得积分10
8秒前
彭于晏应助超11采纳,获得10
9秒前
9秒前
gavincsu发布了新的文献求助10
9秒前
KSGGS给KSGGS的求助进行了留言
9秒前
flow驳回了Aria应助
9秒前
lixiunan完成签到,获得积分10
9秒前
9秒前
dildil发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759