人工智能
卷积神经网络
隐藏字幕
计算机科学
特征学习
推论
判别式
代表(政治)
深度学习
自然语言处理
常识
模式识别(心理学)
特征工程
特征(语言学)
图像(数学)
知识表示与推理
哲学
法学
政治
语言学
政治学
作者
Tan Wang,Jianqiang Huang,Hanwang Zhang,Qianru Sun
标识
DOI:10.1109/cvprw50498.2020.00197
摘要
We present a novel unsupervised feature representation learning method, Visual Commonsense Region-based Convolutional Neural Network (VC R-CNN 1 ), to serve as an improved visual region encoder for high-level tasks such as captioning and VQA. Given a set of detected object regions in an image (e.g., using Faster R-CNN), like any other unsupervised feature learning methods (e.g., word2vec), the proxy training objective of VC R-CNN is to predict the contextual objects of a region. However, they are fundamentally different: the prediction of VC R-CNN is by using causal intervention: P(Y|do(X)), while others are by using the conventional likelihood: P(Y|X). We extensively apply VC R-CNN features in prevailing models of two popular tasks: Image Captioning and VQA, and observe consistent performance boosts across all the methods, achieving many new state-of-the-arts 2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI