清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Review on remote sensing methods for landslide detection using machine and deep learning

山崩 计算机科学 数字高程模型 遥感 人工智能 全色胶片 多光谱图像 地理空间分析 自然灾害 地质学 正射影像 卫星图像 深度学习 地图学 地理 地貌学 海洋学
作者
Amrita Mohan,Amit Kumar Singh,Basant Kumar,R. S. Dwivedi
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:32 (7) 被引量:241
标识
DOI:10.1002/ett.3998
摘要

Abstract Landslide, one of the most critical natural hazards, is caused due to specific compositional slope movement. In the past decades, due to inflation of urbanized area and climate change, a compelling expansion in landslide prevalence took place which is also termed as mass/slope movement and mass wasting, causing extensive collapse around the world. The principal reason for its pursuance is a reduction in the internal resistance of soil and rocks, classified as a slide, topple, fall, and flow. Slopes can be differentiated based on earth material and the nature of its movements. The downward flow of landslides occurs due to excessive rainfall, snowmelt, earthquake, volcanic eruption, and so on. This review article revisits the conventional approaches for identification of landslides, predicting future risk, associated with slope failures, followed by emphasizing the advantages of modern geospatial techniques such as aerial photogrammetry, satellite remote sensing images (ie, panchromatic, multispectral, radar images), Terrestrial laser scanning, and High‐Resolution Digital Elevation Model (HR‐DEM) in updating landslide inventory maps. Machine learning techniques like Support Vector Machine, Artificial neural network, deep learning has been extensively used with geographical data producing effective results for assessment of natural hazard/resources and environmental research. Based on recent studies, deep learning is a reliable tool addressing remote sensing challenges such as trade‐off in imaging system producing poor quality investigation, in addition, to expedite consequent task such as image recognition, object detection, classification, and so on. Conventional methods, like pixel and object‐based machine learning methods, have been broadly explored. Advanced development in deep learning technique like CNN (Convolutional neural network) has been extensively successful in information extraction from an image and has exceeded other traditional approaches. Over the past few years, minor attempts have been made for landslide susceptibility mapping using CNN. In addition, small sample sizes for training purpose will be major drawback and notably remarkable while using deep learning techniques. Also, assessment of the model's performance with diverse training and testing proportion other than commonly utilized ratio, that is, 70/30 needs to be explored further. The review article briefly highlights the remote sensing methods for landslide detection using machine learning and deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY关闭了YY文献求助
12秒前
量子星尘发布了新的文献求助10
20秒前
53秒前
超男完成签到 ,获得积分10
1分钟前
CUN完成签到,获得积分10
1分钟前
猫猫i完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
YY驳回了打打应助
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Qian完成签到 ,获得积分10
3分钟前
白天亮完成签到,获得积分10
3分钟前
宇文非笑完成签到 ,获得积分10
3分钟前
3分钟前
游鱼完成签到,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
3分钟前
传奇完成签到 ,获得积分10
3分钟前
3分钟前
什么也难不倒我完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
YY给YY的求助进行了留言
4分钟前
缓慢的忆枫完成签到,获得积分20
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
文献搬运工完成签到 ,获得积分10
5分钟前
GIA完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
陶世立完成签到 ,获得积分10
7分钟前
轻松的甜瓜完成签到,获得积分10
7分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
nojego完成签到,获得积分10
7分钟前
光合作用完成签到,获得积分10
7分钟前
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015250
求助须知:如何正确求助?哪些是违规求助? 3555212
关于积分的说明 11317932
捐赠科研通 3288595
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983