Review on remote sensing methods for landslide detection using machine and deep learning

山崩 计算机科学 数字高程模型 遥感 人工智能 全色胶片 多光谱图像 地理空间分析 自然灾害 地质学 正射影像 卫星图像 深度学习 地图学 地理 地貌学 海洋学
作者
Amrita Mohan,Amit Kumar Singh,Basant Kumar,R. S. Dwivedi
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:32 (7) 被引量:230
标识
DOI:10.1002/ett.3998
摘要

Abstract Landslide, one of the most critical natural hazards, is caused due to specific compositional slope movement. In the past decades, due to inflation of urbanized area and climate change, a compelling expansion in landslide prevalence took place which is also termed as mass/slope movement and mass wasting, causing extensive collapse around the world. The principal reason for its pursuance is a reduction in the internal resistance of soil and rocks, classified as a slide, topple, fall, and flow. Slopes can be differentiated based on earth material and the nature of its movements. The downward flow of landslides occurs due to excessive rainfall, snowmelt, earthquake, volcanic eruption, and so on. This review article revisits the conventional approaches for identification of landslides, predicting future risk, associated with slope failures, followed by emphasizing the advantages of modern geospatial techniques such as aerial photogrammetry, satellite remote sensing images (ie, panchromatic, multispectral, radar images), Terrestrial laser scanning, and High‐Resolution Digital Elevation Model (HR‐DEM) in updating landslide inventory maps. Machine learning techniques like Support Vector Machine, Artificial neural network, deep learning has been extensively used with geographical data producing effective results for assessment of natural hazard/resources and environmental research. Based on recent studies, deep learning is a reliable tool addressing remote sensing challenges such as trade‐off in imaging system producing poor quality investigation, in addition, to expedite consequent task such as image recognition, object detection, classification, and so on. Conventional methods, like pixel and object‐based machine learning methods, have been broadly explored. Advanced development in deep learning technique like CNN (Convolutional neural network) has been extensively successful in information extraction from an image and has exceeded other traditional approaches. Over the past few years, minor attempts have been made for landslide susceptibility mapping using CNN. In addition, small sample sizes for training purpose will be major drawback and notably remarkable while using deep learning techniques. Also, assessment of the model's performance with diverse training and testing proportion other than commonly utilized ratio, that is, 70/30 needs to be explored further. The review article briefly highlights the remote sensing methods for landslide detection using machine learning and deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu发布了新的文献求助10
1秒前
倔驴发布了新的文献求助10
1秒前
xliiii发布了新的文献求助10
1秒前
文献狂人发布了新的文献求助10
1秒前
土豪的鸿煊完成签到,获得积分10
2秒前
poisonk完成签到,获得积分10
2秒前
2秒前
科研通AI5应助钱多多采纳,获得10
2秒前
asdfghjkl完成签到 ,获得积分10
3秒前
4秒前
何几欢发布了新的文献求助10
5秒前
狂野忆文完成签到,获得积分10
5秒前
小雨发布了新的文献求助10
5秒前
zzznznnn发布了新的文献求助10
5秒前
lc发布了新的文献求助10
6秒前
6秒前
liuxh123完成签到,获得积分10
7秒前
7秒前
狂野忆文发布了新的文献求助10
8秒前
Greenhand发布了新的文献求助10
8秒前
高挑的刺猬完成签到,获得积分10
9秒前
xuzj完成签到,获得积分10
9秒前
10秒前
王木木完成签到,获得积分10
11秒前
11秒前
11秒前
脑洞疼应助酸橙采纳,获得10
12秒前
微笑二娘发布了新的文献求助10
12秒前
12秒前
心酒为友完成签到 ,获得积分10
12秒前
桐桐应助十一月的阴天采纳,获得10
12秒前
pierresun发布了新的文献求助10
13秒前
13秒前
14秒前
Lucas应助狂野忆文采纳,获得10
14秒前
草莓酱发布了新的文献求助10
15秒前
归971003完成签到 ,获得积分10
15秒前
文天发布了新的文献求助30
15秒前
感动迎蕾完成签到,获得积分10
16秒前
思源应助曾经的听枫采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3573869
求助须知:如何正确求助?哪些是违规求助? 3143673
关于积分的说明 9453528
捐赠科研通 2845319
什么是DOI,文献DOI怎么找? 1564178
邀请新用户注册赠送积分活动 732133
科研通“疑难数据库(出版商)”最低求助积分说明 718929