清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems

元启发式 计算机科学 算法 粒子群优化 模拟退火 数学优化 元优化 进化算法 并行元启发式 最优化问题 多群优化 莱维航班 帝国主义竞争算法 Bat算法 人工智能 数学 随机游动 统计
作者
Essam H. Houssein,Mohammed R. Saad,Fatma A. Hashim,Abdelmgeid A. Ali,M. Hassaballah
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:94: 103731-103731 被引量:327
标识
DOI:10.1016/j.engappai.2020.103731
摘要

In this paper, we propose a new metaheuristic algorithm based on Lévy flight called Lévy flight distribution (LFD) for solving real optimization problems. The LFD algorithm is inspired from the Lévy flight random walk for exploring unknown large search spaces (e.g., wireless sensor networks (WSNs). To assess the performance of the LFD algorithm, various optimization test bed problems are considered, namely the congress on evolutionary computation (CEC) 2017 suite and three engineering optimization problems: tension/compression spring, the welded beam, and pressure vessel. The statistical simulation results revealed that the LFD algorithm provides better results with superior performance in most tests compared to several well-known metaheuristic algorithms such as simulated annealing (SA), differential evolution (DE), particle swarm optimization (PSO), elephant herding optimization (EHO), the genetic algorithm (GA), moth-flame optimization algorithm (MFO), whale optimization algorithm (WOA), grasshopper optimization algorithm (GOA), and Harris Hawks Optimization (HHO) algorithm. Furthermore, the performance of the LFD algorithm is tested on other different optimization problems of unknown large search spaces such as the area coverage problem in WSNs. The LFD algorithm shows high performance in providing a good deployment schema than energy-efficient connected dominating set (EECDS), A3, and CDS-Rule K topology construction algorithms for solving the area coverage problem in WSNs. Eventually, the LFD algorithm performs successfully achieving a high coverage rate up to 43.16 %, while the A3, EECDS, and CDS-Rule K algorithms achieve low coverage rates up to 40 % based on network sizes used in the simulation experiments. Also, the LFD algorithm succeeded in providing a better deployment schema than A3, EECDS, and CDS-Rule K algorithms and enhancing the detection capability of WSNs by minimizing the overlap between sensor nodes and maximizing the coverage rate. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/76103-lfd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉沉完成签到 ,获得积分0
3秒前
番茄酱完成签到 ,获得积分10
15秒前
mengmenglv完成签到 ,获得积分0
15秒前
Juvianne发布了新的文献求助30
35秒前
花花完成签到 ,获得积分10
36秒前
王饱饱完成签到 ,获得积分10
37秒前
夜话风陵杜完成签到 ,获得积分0
37秒前
45秒前
海阔天空完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助10
48秒前
Rebeccaiscute完成签到 ,获得积分10
53秒前
Xzx1995完成签到 ,获得积分10
59秒前
外向的妍完成签到,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
punyunyung发布了新的文献求助10
1分钟前
1分钟前
jiyuan完成签到,获得积分10
1分钟前
Joy发布了新的文献求助10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
先锋老刘001完成签到,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
keke发布了新的文献求助10
1分钟前
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
数乱了梨花完成签到 ,获得积分0
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
文艺水风完成签到 ,获得积分10
1分钟前
1分钟前
andre20完成签到 ,获得积分10
1分钟前
萝卜Eating发布了新的文献求助30
1分钟前
神经蛙完成签到 ,获得积分10
2分钟前
punyunyung完成签到,获得积分10
2分钟前
spc68应助黎明先生采纳,获得10
2分钟前
AM发布了新的文献求助10
2分钟前
2分钟前
淡如菊发布了新的文献求助10
2分钟前
Akim应助AM采纳,获得10
2分钟前
丢星完成签到 ,获得积分10
2分钟前
helen李完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310