干涉合成孔径雷达
干涉测量
卷积神经网络
计算机科学
绝对相位
相位展开
相(物质)
连贯性(哲学赌博策略)
像素
路径(计算)
相位恢复
人工智能
算法
模
计算机视觉
合成孔径雷达
光学
数学
傅里叶变换
物理
程序设计语言
数学分析
组合数学
统计
量子力学
作者
Francesco Calvanese,Francescopaolo Sica,Giuseppe Scarpa,Paola Rizzoli
标识
DOI:10.1109/radarconf2043947.2020.9266485
摘要
Bi-dimensional phase unwrapping is among the main critical tasks in SAR interferometry. Indeed, before the actual topography or deformation retrieval, the absolute phase values should be reconstructed from their modulo-2π wrapped version. Due to the presence of noise, the interferometric phase normally presents residues, i.e. phase jumps greater than π on a single pixel. The residues imply that the unwrapping procedure is path-dependent, i.e. it admits different solutions. In this work, we present a preliminary investigation for the implementation of a phase unwrapping algorithm that exploits both the interferometric phase and coherence as input to a Convolutional Neural Network. The obtained results are compared with state-of-the-art algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI