Cross-recurrence analysis for pattern matching of multidimensional physiological signals

计算机科学 数学 模式识别(心理学) 人工智能 匹配(统计) 算法 非线性系统 递归量化分析
作者
Adam Meyers,Mohammed Buqammaz,Hui Yang
出处
期刊:Chaos [American Institute of Physics]
卷期号:30 (12): 123125-
标识
DOI:10.1063/5.0030838
摘要

Cross-recurrence quantification analysis (CRQA), based on the cross-recurrence plot (CRP), is an effective method to characterize and quantify the nonlinear interrelationships between a pair of nonlinear time series. It allows the flexibility of reconstructing signals in the phase space and to identify different types of patterns at arbitrary positions between trajectories. These advantages make CRQA attractive for time series data mining tasks, which have been of recent interest in the literature. However, little has been done to exploit CRQA for pattern matching of multidimensional, especially spatiotemporal, physiological signals. In this paper, we present a novel methodology in which CRQA statistics serve as measures of dissimilarity between pairs of signals and are subsequently used to uncover clusters within the data. This methodology is evaluated on a real dataset consisting of 3D spatiotemporal vectorcardiogram (VCG) signals from healthy and diseased patients. Experimental results show that L max, the length of the longest diagonal line in the CRP, yields the best-performing clustering that almost exactly matches the ground truth diagnoses of patients. Results also show that our proposed measure, R τ max, which characterizes the maximum similarity between signals over all pairwise time-delayed alignments, outperforms all other tested CRQA measures (in terms of matching the ground truth) when the VCG signals are rescaled to reduce the effects of signal amplitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liourg应助义气的妙松采纳,获得50
刚刚
星辰大海应助冷艳乐松采纳,获得10
1秒前
1秒前
Hello应助经法采纳,获得10
1秒前
bing完成签到 ,获得积分10
1秒前
2秒前
Jimmy发布了新的文献求助40
2秒前
六六完成签到 ,获得积分10
2秒前
an完成签到,获得积分10
3秒前
寜1完成签到,获得积分10
3秒前
MMM完成签到,获得积分10
3秒前
3秒前
小二郎应助Zhang采纳,获得10
3秒前
斯文的灵雁完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Leon应助科研通管家采纳,获得100
4秒前
丘比特应助帅玉玉采纳,获得10
4秒前
明天更好发布了新的文献求助10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
剑兰先生应助科研通管家采纳,获得200
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
5秒前
随便发布了新的文献求助10
5秒前
kingwill应助科研通管家采纳,获得20
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
an发布了新的文献求助10
6秒前
wjw关闭了wjw文献求助
6秒前
果汁发布了新的文献求助30
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759