Cross-recurrence analysis for pattern matching of multidimensional physiological signals

计算机科学 数学 模式识别(心理学) 人工智能 匹配(统计) 算法 非线性系统 递归量化分析
作者
Adam Meyers,Mohammed Buqammaz,Hui Yang
出处
期刊:Chaos [American Institute of Physics]
卷期号:30 (12): 123125-
标识
DOI:10.1063/5.0030838
摘要

Cross-recurrence quantification analysis (CRQA), based on the cross-recurrence plot (CRP), is an effective method to characterize and quantify the nonlinear interrelationships between a pair of nonlinear time series. It allows the flexibility of reconstructing signals in the phase space and to identify different types of patterns at arbitrary positions between trajectories. These advantages make CRQA attractive for time series data mining tasks, which have been of recent interest in the literature. However, little has been done to exploit CRQA for pattern matching of multidimensional, especially spatiotemporal, physiological signals. In this paper, we present a novel methodology in which CRQA statistics serve as measures of dissimilarity between pairs of signals and are subsequently used to uncover clusters within the data. This methodology is evaluated on a real dataset consisting of 3D spatiotemporal vectorcardiogram (VCG) signals from healthy and diseased patients. Experimental results show that L max, the length of the longest diagonal line in the CRP, yields the best-performing clustering that almost exactly matches the ground truth diagnoses of patients. Results also show that our proposed measure, R τ max, which characterizes the maximum similarity between signals over all pairwise time-delayed alignments, outperforms all other tested CRQA measures (in terms of matching the ground truth) when the VCG signals are rescaled to reduce the effects of signal amplitude.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feng_qi001完成签到,获得积分10
刚刚
1秒前
阔达荣轩发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
皮二牛牛完成签到,获得积分10
3秒前
3秒前
yuuent发布了新的文献求助30
3秒前
4秒前
4秒前
艳子发布了新的文献求助10
5秒前
哈哈完成签到,获得积分20
5秒前
6秒前
hong发布了新的文献求助10
6秒前
6秒前
莹Y发布了新的文献求助10
6秒前
完美世界应助123采纳,获得10
6秒前
Soleil发布了新的文献求助100
7秒前
美丽佩奇发布了新的文献求助10
10秒前
莹Y完成签到,获得积分10
11秒前
12秒前
12秒前
爱静静应助c182484455采纳,获得10
13秒前
13秒前
14秒前
hyy发布了新的文献求助10
14秒前
36038138发布了新的文献求助30
15秒前
15秒前
15秒前
李爱国应助mustardseeds采纳,获得10
16秒前
hong完成签到,获得积分10
16秒前
在水一方应助老迟的新瑶采纳,获得10
17秒前
刘欢发布了新的文献求助10
17秒前
脑洞疼应助有魅力听枫采纳,获得10
17秒前
LLLYYY完成签到,获得积分10
18秒前
18秒前
Singularity应助哐哐哐铛采纳,获得10
18秒前
19秒前
BK发布了新的文献求助10
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141768
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804148
捐赠科研通 2449027
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260