作者
Michio Hashimoto,Shahdat Hossain,Kentaro Matsuzaki,Osamu Shido,Katsumi Yoshino
摘要
Although brown rice (BR) contains significantly higher levels of nutrients than the traditionally used polished white rice (WR), its consumption among the population is still not noteworthy. WR and BR are essentially same grain. The only difference between the two is the application of an exhaustive milling procedure during the processing of WR that removes all other layers of the grain except the portion of its white endosperm. BR, on the other hand, is prepared by removing only the outer hull of the rice seed. Thus, in addition to its inner endosperm, the bran and germ are also left on the BR. Hence, BR retains all its nutrients, including proteins, lipids, carbohydrates, fibers, vitamins, minerals, tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid (GABA) packed into the bran and germ of the seed. Since BR tastes nutty and takes longer to cook than WR, it is not appreciated by the consumers. However, these problems have been circumvented using non-thermal ultra-high hydrostatic pressure (UHHP)-processing for the treatment of BR. A superior modification in the physicochemical and functional qualities of UHHPBR, along with its ability to curb human diseases may make it a more palatable and nutritious choice of rice over WR or the untreated-BR. Here, we have reviewed the mechanism by which UHHP treatment leads to the modification of nutrients such as proteins, lipids, carbohydrates, and fibers. We have focused on the effects of rice on cell and animal models of different conditions such as hyperlipidemia, diabetes, and hypertension and the possible mechanisms. Finally, we have emphasized the effects of UHHPBR in human cases with rare conditions such as osteoporosis and brain cognition - two age-related degenerative diseases of the elderly population.