亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Electronic Health Data for Disease Prediction: A Comprehensive Literature Review

杠杆(统计) 预测建模 计算机科学 疾病 医疗保健 数据科学 电子数据 数据挖掘 风险分析(工程) 医学 机器学习 情报检索 病理 经济 经济增长
作者
Md Ekramul Hossain,Arif Khan,Mohammad Ali Moni,Shahadat Uddin
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 745-758 被引量:55
标识
DOI:10.1109/tcbb.2019.2937862
摘要

Disease prediction has the potential to benefit stakeholders such as the government and health insurance companies. It can identify patients at risk of disease or health conditions. Clinicians can then take appropriate measures to avoid or minimize the risk and in turn, improve quality of care and avoid potential hospital admissions. Due to the recent advancement of tools and techniques for data analytics, disease risk prediction can leverage large amounts of semantic information, such as demographics, clinical diagnosis and measurements, health behaviours, laboratory results, prescriptions and care utilisation. In this regard, electronic health data can be a potential choice for developing disease prediction models. A significant number of such disease prediction models have been proposed in the literature over time utilizing large-scale electronic health databases, different methods, and healthcare variables. The goal of this comprehensive literature review was to discuss different risk prediction models that have been proposed based on electronic health data. Search terms were designed to find relevant research articles that utilized electronic health data to predict disease risks. Online scholarly databases were searched to retrieve results, which were then reviewed and compared in terms of the method used, disease type, and prediction accuracy. This paper provides a comprehensive review of the use of electronic health data for risk prediction models. A comparison of the results from different techniques for three frequently modelled diseases using electronic health data was also discussed in this study. In addition, the advantages and disadvantages of different risk prediction models, as well as their performance, were presented. Electronic health data have been widely used for disease prediction. A few modelling approaches show very high accuracy in predicting different diseases using such data. These modelling approaches have been used to inform the clinical decision process to achieve better outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
11秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
jiangqqi完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
52秒前
情怀应助科研通管家采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助blenx采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
hongxuezhi完成签到,获得积分10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
在水一方应助zzz采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI5应助任我行采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
blenx发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Huong完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743994
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503