已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Meta-Learning Perspective for Personalized Image Aesthetics Assessment

杠杆(统计) 计算机科学 透视图(图形) 一般化 正规化(语言学) 任务(项目管理) 人工智能 人机交互 机器学习 数学 数学分析 管理 经济
作者
Ning Wang,Junjie Su,Lemin Li,Xiangmin Xu,Jiebo Luo
标识
DOI:10.1109/icip.2019.8803119
摘要

Image aesthetic is a highly subjective task. Thus, generic aesthetics models may lead to inconsistent user agreements even on the same image. Personalized aesthetics models can be employed to remedy the inconsistency issue. In real situation, users shared very small number of annotated images, which makes this problem more challenging. To solve problems above, unlike previous works that focused on user interactive or extracting simple yet effective image features, we address this by meta-learning. Meta-learning is a framework designed for quick adaption of an existing model to a new task with limited labeled data samples. In this way, we can leverage a small amount of annotated data from user and generate an effective personalized aesthetics model quickly. In addition, we proposed a novel meta-learning strategy and a novel meta regularization for our task. Experimental results demonstrate that our approach can effectively learn personalized aesthetics preferences and outperform existing methods on quantitative comparisons with a strong generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you完成签到,获得积分10
刚刚
刚刚
Hello应助渊崖曙春采纳,获得10
1秒前
科研通AI5应助欣慰的以云采纳,获得10
1秒前
李健应助Kiki采纳,获得10
3秒前
鱼羊明完成签到 ,获得积分10
3秒前
筱芯爱上神完成签到 ,获得积分10
4秒前
一川烟草发布了新的文献求助10
5秒前
theo发布了新的文献求助250
6秒前
桐桐应助贪玩的映之采纳,获得10
7秒前
小星星完成签到 ,获得积分10
12秒前
13秒前
14秒前
ltttaaaa完成签到 ,获得积分10
15秒前
甜甜安露完成签到 ,获得积分10
16秒前
BEYOND啊完成签到 ,获得积分10
19秒前
流窜意识关注了科研通微信公众号
19秒前
hujinhua发布了新的文献求助10
20秒前
彭于晏应助刘凯采纳,获得10
20秒前
22秒前
23秒前
23秒前
25秒前
25秒前
ccc完成签到 ,获得积分10
26秒前
moyawen完成签到,获得积分20
27秒前
淡淡智宸发布了新的文献求助10
30秒前
云栈出谷发布了新的文献求助10
31秒前
31秒前
嘿嘿呼发布了新的文献求助10
31秒前
31秒前
浮游应助生椰拿铁死忠粉采纳,获得10
31秒前
优秀凡波发布了新的文献求助10
32秒前
long应助衫楠如画采纳,获得10
33秒前
33秒前
moyawen发布了新的文献求助10
34秒前
朴实子骞完成签到 ,获得积分10
34秒前
冰棒比冰冰完成签到 ,获得积分10
35秒前
唐浩发布了新的文献求助10
39秒前
bkagyin应助玉锅巴采纳,获得10
43秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522