Integration of GC–MS and LC–MS for untargeted metabolomics profiling

代谢组学 代谢物 化学 代谢组 色谱法 生物流体 气相色谱-质谱法 代谢物分析 计算生物学 质谱法 生物化学 生物
作者
Özge Cansın Zeki,Cemil Can Eylem,Tuba Reçber,Sedef Kır,Emirhan Nemutlu
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:190: 113509-113509 被引量:264
标识
DOI:10.1016/j.jpba.2020.113509
摘要

Recently, metabolomics analyses have become increasingly common in the general scientific community as it is applied in several researches relating to diseases diagnosis. Identification and quantification of small molecules belonging to metabolism in biological systems have an important role in diagnosis of diseases. The combination of chromatography with mass spectrometry is used for the accurate and reproducible analysis of hundreds to thousands of metabolites in biological fluids or tissue samples. The number of metabolites that can be identified in biological fluids or tissue varies according to the gas (GC) or liquid (LC) chromatographic techniques used. The cover of these chromatographic techniques also differs from each other based on the metabolite group (polar, lipids, organic acid etc.). Consequently, some of the metabolites can only be analyzed using either GC or LC. However, more than one metabolite or metabolite group may be found altered in a particular disease. Thus, in order to find these alterations, metabolomics analyses that cover a wide range of metabolite groups are usually applied. In this regard, GC–MS and LC–MS techniques are mostly used together to identify completely all the altered metabolites during disease diagnosis. Using these combined techniques also allows identification of metabolite(s) with significantly altered phenotype. This review sheds light on metabolomics studies involving the simultaneous use of GC–MS and LC–MS. The review also discusses the coverage, sample preparation, data acquisition and data preprocessing for untargeted metabolomics studies. Moreover, the advantages and disadvantages of these methods were also evaluated. Finally, precautions and suggestions on how to perform metabolomics studies in an accurate, precise, complete and unbiased way were also outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李爱国应助zsy采纳,获得10
3秒前
3秒前
妩媚的语蕊完成签到,获得积分20
3秒前
无花果应助13981592626采纳,获得10
4秒前
兰球的仙人掌完成签到 ,获得积分10
5秒前
mmmmm完成签到,获得积分10
5秒前
7秒前
李健的小迷弟应助Ivory采纳,获得10
7秒前
7秒前
兴奋的万声完成签到,获得积分10
8秒前
mmmmm发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
善学以致用应助69qq采纳,获得10
11秒前
俊逸的乌发布了新的文献求助10
11秒前
令狐冲完成签到,获得积分0
11秒前
闰土完成签到,获得积分10
11秒前
12秒前
仿真小学生完成签到,获得积分10
12秒前
好运完成签到 ,获得积分10
13秒前
李谨儒完成签到,获得积分10
14秒前
14秒前
浮游应助123456采纳,获得10
14秒前
sun发布了新的文献求助30
16秒前
gaogaogao完成签到,获得积分10
16秒前
ZHN发布了新的文献求助10
17秒前
闫星宇发布了新的文献求助10
18秒前
兰球完成签到 ,获得积分10
22秒前
22秒前
浪子应助liang2508采纳,获得10
22秒前
科研通AI6应助xwwwww采纳,获得10
23秒前
25秒前
哈机密完成签到,获得积分10
25秒前
在水一方应助俊逸的乌采纳,获得10
25秒前
隐形曼青应助yxh采纳,获得10
26秒前
芽芽发布了新的文献求助10
28秒前
lyx发布了新的文献求助10
29秒前
川荣李奈完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353468
求助须知:如何正确求助?哪些是违规求助? 4486102
关于积分的说明 13965219
捐赠科研通 4386345
什么是DOI,文献DOI怎么找? 2409892
邀请新用户注册赠送积分活动 1402182
关于科研通互助平台的介绍 1375995