Integration of GC–MS and LC–MS for untargeted metabolomics profiling

代谢组学 代谢物 化学 代谢组 色谱法 生物流体 气相色谱-质谱法 代谢物分析 计算生物学 质谱法 生物化学 生物
作者
Özge Cansın Zeki,Cemil Can Eylem,Tuba Reçber,Sedef Kır,Emirhan Nemutlu
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:190: 113509-113509 被引量:264
标识
DOI:10.1016/j.jpba.2020.113509
摘要

Recently, metabolomics analyses have become increasingly common in the general scientific community as it is applied in several researches relating to diseases diagnosis. Identification and quantification of small molecules belonging to metabolism in biological systems have an important role in diagnosis of diseases. The combination of chromatography with mass spectrometry is used for the accurate and reproducible analysis of hundreds to thousands of metabolites in biological fluids or tissue samples. The number of metabolites that can be identified in biological fluids or tissue varies according to the gas (GC) or liquid (LC) chromatographic techniques used. The cover of these chromatographic techniques also differs from each other based on the metabolite group (polar, lipids, organic acid etc.). Consequently, some of the metabolites can only be analyzed using either GC or LC. However, more than one metabolite or metabolite group may be found altered in a particular disease. Thus, in order to find these alterations, metabolomics analyses that cover a wide range of metabolite groups are usually applied. In this regard, GC–MS and LC–MS techniques are mostly used together to identify completely all the altered metabolites during disease diagnosis. Using these combined techniques also allows identification of metabolite(s) with significantly altered phenotype. This review sheds light on metabolomics studies involving the simultaneous use of GC–MS and LC–MS. The review also discusses the coverage, sample preparation, data acquisition and data preprocessing for untargeted metabolomics studies. Moreover, the advantages and disadvantages of these methods were also evaluated. Finally, precautions and suggestions on how to perform metabolomics studies in an accurate, precise, complete and unbiased way were also outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默的妍完成签到 ,获得积分10
刚刚
可可完成签到 ,获得积分10
2秒前
言午完成签到 ,获得积分10
2秒前
junjie发布了新的文献求助10
2秒前
浮浮世世完成签到,获得积分10
6秒前
淡然的芷荷完成签到 ,获得积分10
9秒前
fge完成签到,获得积分10
11秒前
玻璃外的世界完成签到,获得积分10
15秒前
1111111111应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
leaolf应助科研通管家采纳,获得150
18秒前
Ava应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
任kun发布了新的文献求助10
19秒前
好学的泷泷完成签到 ,获得积分10
20秒前
nano完成签到 ,获得积分10
20秒前
24秒前
纯真保温杯完成签到 ,获得积分10
28秒前
刘佳佳完成签到 ,获得积分10
29秒前
宝贝完成签到 ,获得积分10
31秒前
玛斯特尔完成签到,获得积分10
34秒前
看文献完成签到,获得积分0
35秒前
Joanne完成签到 ,获得积分10
35秒前
hikevin126完成签到,获得积分10
39秒前
哈哈哈完成签到 ,获得积分10
41秒前
mango发布了新的文献求助10
41秒前
安详映阳完成签到 ,获得积分10
45秒前
杨杨杨完成签到,获得积分10
49秒前
jzmulyl完成签到,获得积分10
51秒前
506407完成签到,获得积分10
56秒前
aki完成签到 ,获得积分10
57秒前
天才小榴莲完成签到,获得积分10
57秒前
朴素羊完成签到 ,获得积分10
59秒前
jzmupyj完成签到,获得积分10
59秒前
孤单心事完成签到,获得积分10
1分钟前
沉静的乘风完成签到,获得积分10
1分钟前
lyf完成签到 ,获得积分10
1分钟前
活泼的大船完成签到,获得积分10
1分钟前
卞卞完成签到,获得积分10
1分钟前
miaomiao完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918746
求助须知:如何正确求助?哪些是违规求助? 4191111
关于积分的说明 13015764
捐赠科研通 3961150
什么是DOI,文献DOI怎么找? 2171519
邀请新用户注册赠送积分活动 1189578
关于科研通互助平台的介绍 1098155