多输入多输出
可见光通信
计算机科学
人工神经网络
控制理论(社会学)
误码率
空间复用
电子工程
算法
电信
光学
物理
解码方法
工程类
频道(广播)
人工智能
控制(管理)
发光二极管
作者
Peng Zou,Yiheng Zhao,Fangchen Hu,Nan Chi
出处
期刊:Optics Express
[The Optical Society]
日期:2020-08-05
卷期号:28 (19): 28017-28017
被引量:15
摘要
For the single receiver multiple-input-multiple-output (SR-MIMO) visible light communication (VLC) system, the superposing of two transmitters will introduce severe distortion in the time-domain and frequency-domain. In this paper, we first proposed a MIMO multi-branch hybrid neural network (MIMO-MBNN) as the post-equalizer in the SR-MIMO pulse amplitude magnitude eight levels (PAM8) VLC system. Compared with the traditional single-input-single-output least mean square equalizer with Volterra series (SISO-LMS) and SISO deep neural network (SISO-DNN), MIMO-MBNN can achieve at most 3.35 dB Q factor improvement. Furthermore, the operation range of MIMO-MBNN is at least 2.33 times of SISO-DNN and SISO-LMS among the measured signal peak to peak voltage. At last, 2.1 Gbps data rate is achieved by MIMO-MBNN below the 7% hard-decision forward error correction (HD-FEC) threshold. As far as we know, this is the highest data rate in the SR-MIMO VLC system.
科研通智能强力驱动
Strongly Powered by AbleSci AI